Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Fish Physiol Biochem ; 49(1): 1-17, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36622623

RESUMO

This study focuses on the relationship between myostatin (MyoS), myogenin (MyoG), and the growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis for muscle growth and histopathological changes in muscle after an Aeromonas hydrophila infection. A total number of 90 Nile tilapia (55.85 g) were randomly allocated into two equal groups of three replicates each. The first group was an uninfected control group that was injected intraperitoneally (ip) with 0.2 ml phosphate buffer saline (PBS), while the second group was injected ip with 0.2 ml (1.3 × 108 CFU/ml) Aeromonas hydrophila culture suspension. Sections of white muscle and liver tissues were taken from each group 24 h, 48 h, 72 h, and 1 week after infection for molecular analysis and histopathological examination. The results revealed that with time progression, the severity of muscle lesions increased from edema between bundles and mononuclear inflammatory cell infiltration 24 h post-challenge to severe atrophy of muscle bundles with irregular and curved fibers with hyalinosis of the fibers 1 week postinfection. The molecular analysis showed that bacterial infection was able to induce the muscle expression levels of GH with reduced ILGF-1, MyoS, and MyoG at 24 h postinfection. However, time progression postinfection reversed these findings through elevated muscle expression levels of MyoS with regressed expression levels of muscle GH, ILGF-1, and MyoG. There have been no previous reports on the molecular expression analysis of the aforementioned genes and muscle histopathological changes in Nile tilapia following acute Aeromonas hydrophila infection. Our findings, collectively, revealed that the up-and down-regulation of the myostatin signaling is likely to be involved in the postinfection-induced muscle wasting through the negative regulation of genes involved in muscle growth, such as GH, ILGF-1, and myogenin, in response to acute Aeromonas hydrophila infection in Nile tilapia, Oreochromis niloticus.


Assuntos
Ciclídeos , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Dieta , Aeromonas hydrophila , Miogenina/metabolismo , Miostatina/genética , Miostatina/metabolismo , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/microbiologia , Músculo Esquelético , Doenças dos Peixes/microbiologia
2.
Environ Sci Pollut Res Int ; 30(10): 26308-26326, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36367645

RESUMO

In medicine, silver nanoparticles (AgNPs) are employed often. They do, however, have negative impacts, particularly on the reproductive organs. This research aimed to assess AgNP impact on the testis and the possible intracellular mechanisms to induce testicular deteriorations in rats at various concentrations and different time intervals. Sprague Dawley rats (n = 40) were allocated into four equal groups: the control one, and three other groups injected intra-peritoneally with AgNP solution 0.25, 0.5, and 1 mg/kg b.w. respectively for 15 and 30 days. Our findings revealed that AgNPs reduced body and testicular weights, estradiol (E2) and testosterone (T) hormone levels, and sperm parameters while elevating the nitric oxide and malondialdehyde levels with inhibition of reduced glutathione contents in testicular tissue. Interestingly, AgNPs significantly upregulated the testicular inducible nitric oxide synthase, B cell lymphoma 2 (Bcl-2)-associated X, transforming growth factor, and alpha-smooth muscle actin (α-SMA) expression levels. However, apurinic/apyrimidinic endo deoxyribonuclease 1 (APE1), NAD (P) H quinone dehydrogenase 1 (NQO1), and Bcl-2 expression levels were all downregulated indicating exhaustion of body antioxidant and repairing defense mechanisms in testicles in comparison with the control rats. Various histological alterations were also detected which dramatically increased in rats sacrificed after 30 days such as loss of the lining cells of seminiferous tubules with no spermatozoa and tubular irregularities associated with thickening of their basement membranes. Immunolabeling implicated in the apoptotic pathway revealed a negative expression of Bcl-2 and marked immunoreactivity for caspase-3 after 30 days of AgNP treatment in comparison to the control rats. To our knowledge, there have been no previous publications on the role of the α-SMA, APE1, and NQO1 genes in the molecular pathogenesis of AgNP testicular cytotoxicity following AgNP acute and chronic exposure.


Assuntos
Nanopartículas Metálicas , Testículo , Animais , Masculino , Ratos , Actinas/metabolismo , Antioxidantes/metabolismo , Apoptose , Proteína X Associada a bcl-2/metabolismo , Fibrose , Nanopartículas Metálicas/toxicidade , NAD(P)H Desidrogenase (Quinona)/metabolismo , Estresse Oxidativo , Ratos Sprague-Dawley , Prata/efeitos adversos , Prata/metabolismo , Testículo/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima
3.
Environ Sci Pollut Res Int ; 29(53): 80448-80465, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35716303

RESUMO

Despite the extraordinary use of silver nanoparticles (AgNPs) in medicinal purposes and the food industry, there is rising worry about potential hazards to human health and the environment. The existing study aims to assess the hepatotoxic effects of different dosages of AgNPs by evaluating hematobiochemical parameters, oxidative stress, liver morphological alterations, immunohistochemical staining, and gene expression to clarify the mechanism of AgNPs' hepatic toxic potential. Forty male Sprague Dawley rats were randomly assigned into control and three AgNPs intraperitoneally treated groups 0.25, 0.5, and 1 mg/kg b.w. daily for 15 and 30 days. AgNP exposure reduced body weight, caused haematological abnormalities, and enhanced hepatic oxidative and nitrosative stress with depletion of the hepatic GSH level. Serum hepatic injury biomarkers with pathological hepatic lesions where cholangiopathy emerges as the main hepatic alteration in a dosage- and duration-dependent manner were also elevated. Furthermore, immunohistochemical labelling of apoptotic markers demonstrated that Bcl-2 was significantly downregulated while caspase-3 was significantly upregulated. In conclusion, the hepatotoxic impact of AgNPs may be regulated by two mechanisms, implying the apoptotic/antiapoptotic pathway via raising BAX and inhibiting Bcl-2 expression levels in a dose-dependent manner. The TGF-ß1 and α-SMA pathway which triggered fibrosis with incorporation of iNOS which consequently activates the inflammatory process were also elevated. To our knowledge, there has been no prior report on the experimental administration of AgNPs in three different dosages for short and long durations in rats with the assessment of Bcl-2, BAX, iNOS, TGF-ß1, and α-SMA gene expressions.


Assuntos
Nanopartículas Metálicas , Fator de Crescimento Transformador beta1 , Animais , Masculino , Ratos , Proteína X Associada a bcl-2/metabolismo , Biomarcadores/metabolismo , Caspase 3/metabolismo , Fígado , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Sprague-Dawley , Prata/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Actinas/metabolismo
4.
Environ Sci Pollut Res Int ; 29(46): 69798-69817, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35576029

RESUMO

Ochratoxin A (OTA) is one of the most dangerous and that pollute agricultural products, inducing a variety of toxic effects in humans and animals. The current study explored the protective effect of different concentrations of Aspergillus awamori (A. awamori) against OTA (0.3 mg/kg diet) induced renal and cardiac damage by exploring its mechanism of action in 60 New Zealand white male rabbits. Dietary supplementation of A. awamori at the selected doses of 50, 100, and 150 mg/kg diet, respectively, for 2 months significantly improved the rabbit's growth performance; modulated the suppressed immune response and restored the altered hematological parameters; reduced the elevated levels of renal injury biomarkers such as urea, creatinine, and alkaline phosphatase; and increased serum total proteins concentrations. Moreover, it also declined enzymatic activities of cardiac injury biomarkers, including AST, LDH, and CK-MB. A. awamori alleviated OTA-induced degenerative and necrotic changes in the kidney and heart of rabbits. Interestingly, A. awamori upregulated Nrf2/OH-1 signaling pathway. Therefore enhanced TAC, CAT, and SOD enzyme activities and reduced OTA-induced oxidative and nitrosative stress by declining iNOS gene expression and consequently lowered MDA and NO levels. In addition to attenuating renal and cardiac inflammation via reducing IL-1ß, TNF-α gene expressions in a dose-dependent response. In conclusion,this is the first report to pinpoint that dietary incorporation of A. awamori counteracted OTA-induced renal and cardiac damage by potentiating the rabbit's antioxidant defense system through its potent antioxidant, free radical scavenging, and anti-inflammatory properties in a dose-dependent response. Based on our observations, A. awamori could be utilized as a natural protective agent against ochratoxicosis in rabbits.


Assuntos
Antioxidantes , Fator 2 Relacionado a NF-E2 , Animais , Masculino , Coelhos , Fosfatase Alcalina/metabolismo , Antioxidantes/metabolismo , Aspergillus , Biomarcadores/metabolismo , Creatinina/metabolismo , Radicais Livres/metabolismo , Expressão Gênica , Rim , Fator 2 Relacionado a NF-E2/metabolismo , Ocratoxinas , Estresse Oxidativo , Substâncias Protetoras/farmacologia , Transdução de Sinais , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ureia/metabolismo
5.
Biomed Pharmacother ; 143: 112151, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34507115

RESUMO

Wound healing is a public health concern. Licorice gained a great attention for its antioxidant and anti-inflammatory properties which expand its valuable effects as a herbal medicine. In this study, we pointed out to the wound healing potential and the mechanism by which licorice alcoholic extract can modulate cutaneous wound healing through immune, antioxidant, histopathological, immunohistochemical (IHC) and molecular studies. 24 Wister rats were assigned into 3 groups (n = 8 each); control group, topical and oral supplied groups. Licorice extract administration significantly increased total and differential leucocyte counts, phagocytic activity of neutrophils, antioxidant biomarkers as superoxide dismutase (SOD), glutathione peroxidase activities (GPx) and reduced glutathione (GSH) content with a notable reduction in oxidative stress marker malondialdehyde (MDA). Moreover, histopathological findings detected complete re-epithelialization with increasing collagen synthesis while IHC results revealed a significant enhancement in the expression of α-SMA, PDGFR-α, FGFR1 and Cytokeratin 14 in licorice treated groups compared with the control group. Licorice extract supplementation accelerated wound healing by increasing angiogenesis and collagen deposition through up-regulation of bFGF, VEGF and TGF-ß gene expression levels compared with the control group. UPLC-PDA-MS/MS aided to authenticate the studied Glycyrrihza species and recognized 101 potential constituents that may be responsible for licorice-exhibited potentials. Based on our observations we concluded that licorice enhanced cutaneous wound healing via its free radical-scavenging potential, potent antioxidant activities, and anti-inflammatory actions. Therefore, licorice could be used as a potential alternative therapy for wound injury which could overcome the associated limitations of modern therapeutic products.


Assuntos
Indutores da Angiogênese/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Glycyrrhiza , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Ferimentos Penetrantes/tratamento farmacológico , Indutores da Angiogênese/isolamento & purificação , Proteínas Angiogênicas/genética , Proteínas Angiogênicas/metabolismo , Animais , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/isolamento & purificação , Modelos Animais de Doenças , Regulação da Expressão Gênica , Glycyrrhiza/química , Mediadores da Inflamação/metabolismo , Masculino , Neovascularização Fisiológica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Pele/lesões , Pele/metabolismo , Pele/patologia , Ferimentos Penetrantes/genética , Ferimentos Penetrantes/metabolismo , Ferimentos Penetrantes/patologia
6.
Antioxidants (Basel) ; 10(6)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200190

RESUMO

Hepatocellular carcinoma (HCC) is the most common cancer in humans. Despite advances in its treatment, liver cancer remains one of the most difficult cancers to treat. This study aimed to investigate the ameliorative action and potential mechanism of Aspergillus awamori (ASP) administration against the initiation process of liver carcinogenesis induced by diethylnitrosamine (DEN) in male Wistar rats. Seventy-two male rats were divided equally into eight groups as follows, Group 1: untreated control; Group 2: DEN (200 mg/kg bw) intra-peritoneally for the initiation of HCC; Groups 3-5: DEN + ASP at a dose of 1, 0.5, and 0.25 mg/kg bw and groups 6-8: ASP at a dose of 1, 0.5, and 0.25 mg/kg bw. Supplementation of A. awamori significantly lightened the adverse impacts induced by DEN via restoring the leukogram to normal, lowering the elevated serum aspartate aminotransferase (AST), alanine transaminase (ALT), and γ-glutamyl transferase (GGT), and alkaline phosphatase (ALP). Furthermore, it enhanced the hepatic antioxidant capacity through increasing the reduced glutathione (GSH) level and catalase (CAT) activity with a marked reduction in malondialdehyde (MDA) level. In addition, it decreased the positive GST-P foci. Likewise, a significant alteration of DEN-associated hepatocarcinogenesis occurred through inhibiting cytochrome P450 (Cyp19) and activating p53 gene expression. In conclusion, supplementation of A. awamori counteracts the negative effects of DEN, inhibits the early development of GST-P-positive foci and could be used as a new alternative strategy for its chemo-preventive effect in liver cancer. To the best of our knowledge, the present study is the first to report the hepato-protective effect of A. awamori in induced hepatocarcinogenesis.

7.
Biomed Pharmacother ; 137: 111349, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33567349

RESUMO

Blue-green microalga Spirulina platensis (SP) gained more attention for its antioxidant and/or anti-inflammatory properties magnifying its beneficial effects as a feed additive and for cosmetic and biomedical applications. This study was performed to examine the impact of SP on the cutaneous wound and burn healing and to develop an understanding of the correlation between the sequelae of wound healing and the molecular expression patterns of wound healing-related genes as angiogenic basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) and fibrosis-related genes as transforming growth factor-ß (TGF-ß) and α-smooth muscle actin (α-SMA) in rat wound models. To achieve these goals, two experiments were performed on 32 Wister male rats that were divided into 4 groups of 8 rats each. Each experiment was represented by 2 groups; the control group (CG) and the Spirulina group (SG). A full-thickness wound (1.5 × 1.5 cm) and burn wound (2 × 2 cm) were made on the back of each generally anaesthetized rat and the areas of wound and burn were measured on days of 0, 3, 6, 9, 12, and 15 and 0, 3, 6, 9, 12, 15, 18, and 21 post-wound and post-burn respectively. In both experiments, SP was topically applied on the backs of wounded and burned rats in Spirulina treated groups. The phases of wound granulation tissues were detected histopathologically. Immunohistochemistry was used to determine the expressions of (TGF-B1) and (VEGF). Furthermore, the relative quantification of gene expression was implemented using the (bFGF), (VEGF), (TGF-Ɓ1), and (α-SMA) as target genes. Histopathological examination revealed inflammatory cell infiltration, angiogenesis, epithelialization, and extracellular matrix deposition and wound contraction in SG as compared to CG in both experiments. Immunohistochemistry results showed a significant improvement in the VEGF and TGF-ß1 expression levels of SG in both experiments. Interestingly, SG in both experiments revealed upregulation of angiogenic genes (bFGF and VEGF) and downregulation of fibrotic genes (TGF-ß1 and α-SMA). In conclusion, our findings suggest that the topically applied Spirulina promoted wound healing. Thus, SP can be used as a biomedical application to treat various skin wounds and may reveal a potential molecular basis for future promising antifibrotic agents against scar formation.


Assuntos
Actinas/genética , Cicatriz/metabolismo , Fator 2 de Crescimento de Fibroblastos/genética , Neovascularização Patológica/metabolismo , Spirulina , Fator de Crescimento Transformador beta1/genética , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Queimaduras/tratamento farmacológico , Queimaduras/patologia , Colágeno/efeitos dos fármacos , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Tecido de Granulação/efeitos dos fármacos , Masculino , Ratos Wistar , Reepitelização/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Ferimentos e Lesões/tratamento farmacológico , Ferimentos e Lesões/patologia
8.
BMC Vet Res ; 16(1): 352, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32972407

RESUMO

BACKGROUND: Collagen is the most abundant structural protein in the mammalian connective tissue and represents approximately 30% of animal protein. The current study evaluated the potential capacity of collagen extract derived from Nile tilapia skin in improving the cutaneous wound healing in rats and investigated the underlying possible mechanisms. A rat model was used, and the experimental design included a control group (CG) and the tilapia collagen treated group (TCG). Full-thickness wounds were conducted on the back of all the rats under general anesthesia, then the tilapia collagen extract was applied topically on the wound area of TCG. Wound areas of the two experimental groups were measured on days 0, 3, 6, 9, 12, and 15 post-wounding. The stages of the wound granulation tissues were detected by histopathologic examination and the expression of vascular endothelial growth factor (VEGF), and transforming growth factor (TGF-ß1) were investigated using immunohistochemistry. Moreover, relative gene expression analysis of transforming growth factor-beta (TGF-ß1), basic fibroblast growth factor (bFGF), and alpha-smooth muscle actin (α-SMA) were quantified by real-time qPCR. RESULTS: The histopathological assessment showed noticeable signs of skin healing in TCG compared to CG. Immunohistochemistry results revealed remarkable enhancement in the expression levels of VEGF and TGF-ß1 in TCG. Furthermore, TCG exhibited marked upregulation in the VEGF, bFGF, and α-SMA genes expression. These findings suggested that the topical application of Nile tilapia collagen extract can promote the cutaneous wound healing process in rats, which could be attributed to its stimulating effect on recruiting and activating macrophages to produce chemotactic growth factors, fibroblast proliferation, and angiogenesis. CONCLUSIONS: The collagen extract could, therefore, be a potential biomaterial for cutaneous wound healing therapeutics.


Assuntos
Colágeno/farmacologia , Pele/química , Cicatrização/efeitos dos fármacos , Actinas/genética , Actinas/metabolismo , Animais , Ciclídeos , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Expressão Gênica/efeitos dos fármacos , Masculino , Ratos Wistar , Fatores de Crescimento do Endotélio Vascular/genética , Fatores de Crescimento do Endotélio Vascular/metabolismo
9.
Biol Trace Elem Res ; 198(2): 661-668, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32157633

RESUMO

The present investigation aimed to evaluate the influence of selenium nanoparticles (Se-NPs) or/and spirulina (SP) on the growth, immunity, and oxidation resistance of Nile tilapia. Four groups of fish fed diets with Se-NPs or/and SP at 0 g (control), 1 g SP/kg diet (SP), 1 mg Se-NPs/kg diet (Se-NPs), and 1 g SP + 1 mg Se-NPs/kg diet (SP/Se-NPs) for 60 days. Fish fed Se-NPs or/and SP displayed significantly improved weight gain (WG) and decreased feed conversion ratio (P < 0.05). The highest WG has observed in fish fed both Se-NPs and SP, while the specific growth rate was improved by feeding Se-NPs only or both Se-NPs and SP (P < 0.05). Blood albumin was increased significantly with Se-NPs with regard to the control (P < 0.05), while there were no significant differences between fish fed Se-NPs or/and SP. Blood total protein also was improved by feeding Se-NPs only or both Se-NPs and SP (P < 0.05). Further, blood immunoglobulin M was increased by feeding both Se-NPs and SP (P < 0.05), while the differences were insignificantly differing with fish fed only Se-NPs (P > 0.05). The transcription of liver superoxide dismutase (SOD) and tumor necrosis factor-alpha (TNF-α) genes was upregulated significantly by Se-NPs or/and SP (P < 0.05). Interestingly, TNF-α was significantly upregulated by SP when compared to those fed Se-NPs only or both Se-NPs and SP. However, heat shock protein 70 (HSP70) gene transcription was downregulated by Se-NPs or/and SP (P < 0.05). Based on the measured parameters, the mixture of both Se-NPs and SP is highly recommended for the welfare of Nile tilapia.


Assuntos
Ciclídeos , Nanopartículas , Selênio , Spirulina , Ração Animal/análise , Animais , Ciclídeos/genética , Dieta/veterinária , Suplementos Nutricionais , Proteínas de Choque Térmico/genética , Selênio/farmacologia
10.
Res Vet Sci ; 130: 212-221, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32203766

RESUMO

A trial was operated to assess the potential of using Lactobacillus plantarum L-137 (L-137) and/or ß-glucan (BG) in improving the resistance of Nile tilapia against Aeromonas hydrophila. Control diet and 3 diets supplemented with L-137, BG or L-137 + BG were prepared. Final body weight, specific growth rate, superoxide dismutase, and catalase showed considerably (P < .05) increased values in L-137 or L-137/BG groups, while glutathione peroxidase increased significantly (P < .05) only in L-137/BG group. Fish fed L-137 and/or BG diets showed that feed conversion ratio and malonaldehyde levels were significantly decreased (P < .05). Also, both L-137 and BG helped Nile tilapia to have high phagocytosis activity and relative expression of tumor necrosis factor-alpha (TNF-α) and interleukin 1 beta (IL-1ß) and interferon-gamma (INF-γ) genes. After A. hydrophila challenge, the intestinal villi epithelium of the L-137/BG group was intact and denser than the other groups. The hepatopancreas and spleen of the control group displayed severe necrosis in hepatocytes and congestion of blood sinusoids in addition to diffuse vacuolation. Regarding the L-137, BG and L-137/BG groups, there was a moderate and normal degree of vacuolation with focal necrosis and mild to moderate degree of congestion of blood sinusoids. Red blood cells, hemoglobin, and albumin showed meaningfully (P < .05) increased values in L-137 or L-137/BG groups. TNF-α, IL-1ß, and INF-γ expressions were upregulated by L-137 and/or BG. The obtained results revealed the ability of L-137 and/or BG to protect Nile tilapia from the effects of A. hydrophila infection by the motivation of the immune, antioxidative, and antiinflammation responses.


Assuntos
Adjuvantes Imunológicos/farmacologia , Aeromonas hydrophila/fisiologia , Doenças dos Peixes/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/veterinária , Lactobacillus plantarum/química , Probióticos/farmacologia , beta-Glucanas/farmacologia , Adjuvantes Imunológicos/administração & dosagem , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Dieta/veterinária , Resistência à Doença/imunologia , Doenças dos Peixes/microbiologia , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Probióticos/administração & dosagem , beta-Glucanas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA