Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RNA ; 30(2): 124-135, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38071477

RESUMO

The hydrogen peroxide-induced small RNA OxyS has been proposed to originate from the 3' UTR of a peroxide mRNA. Unexpectedly, phylogenetic OxyS targetome predictions indicate that most OxyS targets belong to the category of "cell cycle," including cell division and cell elongation. Previously, we reported that Escherichia coli OxyS inhibits cell division by repressing expression of the essential transcription termination factor nusG, thereby leading to the expression of the KilR protein, which interferes with the function of the major cell division protein, FtsZ. By interfering with cell division, OxyS brings about cell-cycle arrest, thus allowing DNA damage repair. Cell division and cell elongation are opposing functions to the extent that inhibition of cell division requires a parallel inhibition of cell elongation for the cells to survive. In this study, we report that in addition to cell division, OxyS inhibits mepS, which encodes an essential peptidoglycan endopeptidase that is responsible for cell elongation. Our study indicates that cell-cycle arrest and balancing between cell division and cell elongation are important and conserved functions of the oxidative stress-induced sRNA OxyS.


Assuntos
Proteínas de Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Filogenia , Fatores de Transcrição/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Divisão Celular/genética , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo
2.
Proc Natl Acad Sci U S A ; 109(12): 4621-6, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-22393021

RESUMO

The conserved RNA-binding protein Hfq and its associated small regulatory RNAs (sRNAs) are increasingly recognized as the players of a large network of posttranscriptional control of gene expression in Gram-negative bacteria. The role of Hfq in this network is to facilitate base pairing between sRNAs and their trans-encoded target mRNAs. Although the number of known sRNA-mRNA interactions has grown steadily, cellular factors that influence Hfq, the mediator of these interactions, have remained unknown. We report that RelA, a protein long known as the central regulator of the bacterial-stringent response, acts on Hfq and thereby affects the physiological activity of RyhB sRNA as a regulator of iron homeostasis. RyhB requires RelA in vivo to arrest growth during iron depletion and to down-regulate a subset of its target mRNAs (fdoG, nuoA, and sodA), whereas the sodB and sdhC targets are barely affected by RelA. In vitro studies with recombinant proteins show that RelA enhances multimerization of Hfq monomers and stimulates Hfq binding of RyhB and other sRNAs. Hfq from polysomes extracted from wild-type cells binds RyhB in vitro, whereas Hfq from polysomes of a relA mutant strain shows no binding. We propose that, by increasing the level of the hexameric form of Hfq, RelA enables binding of RNAs whose affinity for Hfq is low. Our results suggest that, under specific conditions and/or environments, Hfq concentrations are limiting for RNA binding, which thereby provides an opportunity for cellular proteins such as RelA to impact sRNA-mediated responses by modulating the activity of Hfq.


Assuntos
Proteínas de Escherichia coli/fisiologia , Escherichia coli/metabolismo , Fator Proteico 1 do Hospedeiro/fisiologia , Ligases/fisiologia , RNA Bacteriano/metabolismo , Proteínas de Ligação a RNA/fisiologia , Reagentes de Ligações Cruzadas/farmacologia , Cinética , Modelos Biológicos , Polirribossomos/metabolismo , Estrutura Terciária de Proteína , Fatores de Tempo , Raios Ultravioleta
3.
J Bacteriol ; 190(14): 5063-74, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18502854

RESUMO

Enterohemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC, respectively) strains represent a major global health problem. Their virulence is mediated by the concerted activity of an array of virulence factors including toxins, a type III protein secretion system (TTSS), pili, and others. We previously showed that EPEC O127 forms a group 4 capsule (G4C), and in this report we show that EHEC O157 also produces a G4C, whose assembly is dependent on the etp, etk, and wzy genes. We further show that at early time points postinfection, these G4Cs appear to mask surface structures including intimin and the TTSS. This masking inhibited the attachment of EPEC and EHEC to tissue-cultured epithelial cells, diminished their capacity to induce the formation of actin pedestals, and attenuated TTSS-mediated protein translocation into host cells. Importantly, we found that Ler, a positive regulator of intimin and TTSS genes, represses the expression of the capsule-related genes, including etp and etk. Thus, the expression of TTSS and G4C is conversely regulated and capsule production is diminished upon TTSS expression. Indeed, at later time points postinfection, the diminishing capsule no longer interferes with the activities of intimin and the TTSS. Notably, by using the rabbit infant model, we found that the EHEC G4C is required for efficient colonization of the rabbit large intestine. Taken together, our results suggest that temporal expression of the capsule, which is coordinated with that of the TTSS, is required for optimal EHEC colonization of the host intestine.


Assuntos
Adesinas Bacterianas/metabolismo , Cápsulas Bacterianas/metabolismo , Escherichia coli Enteropatogênica/patogenicidade , Escherichia coli O157/patogenicidade , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fatores de Virulência/metabolismo , Animais , Aderência Bacteriana , Cápsulas Bacterianas/ultraestrutura , Linhagem Celular , Escherichia coli Enteropatogênica/metabolismo , Escherichia coli Enteropatogênica/ultraestrutura , Células Epiteliais/microbiologia , Eritrócitos/microbiologia , Infecções por Escherichia coli , Escherichia coli O157/metabolismo , Escherichia coli O157/ultraestrutura , Proteínas de Escherichia coli/genética , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Humanos , Intestino Grosso/microbiologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia Eletrônica de Transmissão , Mutagênese Insercional , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Coelhos , Transativadores/metabolismo
4.
Nucleic Acids Res ; 36(6): 1913-27, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18267966

RESUMO

The emergence of pathogenic strains of enteric bacteria and their adaptation to unique niches are associated with the acquisition of foreign DNA segments termed 'genetic islands'. We explored these islands for the occurrence of small RNA (sRNA) encoding genes. Previous systematic screens for enteric bacteria sRNAs were mainly carried out using the laboratory strain Escherichia coli K12, leading to the discovery of approximately 80 new sRNA genes. These searches were based on conservation within closely related members of enteric bacteria and thus, sRNAs, unique to pathogenic strains were excluded. Here we describe the identification and characterization of 19 novel unique sRNA genes encoded within the 'genetic islands' of the virulent strain Salmonella typhimurium. We show that the expression of many of the island-encoded genes is associated with stress conditions and stationary phase. Several of these sRNA genes are induced when Salmonella resides within macrophages. One sRNA, IsrJ, was further examined and found to affect the translocation efficiency of virulence-associated effector proteins into nonphagocytic cells. In addition, we report that unlike the majority of the E. coli sRNAs that are trans regulators, many of the island-encoded sRNAs affect the expression of cis-encoded genes. Our study suggests that the island encoded sRNA genes play an important role within the network that regulates bacterial adaptation to environmental changes and stress conditions and thus controls virulence.


Assuntos
Ilhas Genômicas , RNA Bacteriano/genética , RNA não Traduzido/genética , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidade , Fatores de Virulência/genética , Sequência de Bases , Biologia Computacional , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Células HeLa , Humanos , Macrófagos/microbiologia , Dados de Sequência Molecular , RNA Bacteriano/análise , RNA Bacteriano/metabolismo , RNA não Traduzido/análise , RNA não Traduzido/metabolismo , Salmonella typhimurium/metabolismo , Virulência , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA