Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Int J Mol Sci ; 24(14)2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37511593

RESUMO

The data on tumor molecular profiling of European patients with prostate cancer is limited. Our aim was to evaluate the prevalence and prognostic and predictive values of gene alterations in unselected patients with prostate cancer. The presence of gene alterations was assessed in patients with histologically confirmed prostate cancer using the ForeSENTIA® Prostate panel (Medicover Genetics), targeting 36 clinically relevant genes and microsatellite instability testing. The primary endpoint was the prevalence of gene alterations in homologous recombination repair (HRR) genes. Overall, 196 patients with prostate cancer were evaluated (median age 72.2 years, metastatic disease in 141 (71.9%) patients). Gene alterations were identified in 120 (61%) patients, while alteration in HRR genes were identified in 34 (17.3%) patients. The most commonly mutated HRR genes were ATM (17, 8.7%), BRCA2 (9, 4.6%) and BRCA1 (4, 2%). The presence of HRR gene alterations was not associated with advanced stage (p = 0.21), age at diagnosis (p = 0.28), Gleason score (p = 0.17) or overall survival (HR 0.72; 95% CI: 0.41-1.26; p = 0.251). We identified clinically relevant somatic gene alterations in European patients with prostate cancer. These molecular alterations have prognostic significance and therapeutic implications and/or may trigger genetic testing in selected patients. In the era of precision medicine, prospective research on the predictive role of these alterations for innovative treatments or their combinations is warranted.


Assuntos
Medicina de Precisão , Neoplasias da Próstata , Masculino , Humanos , Idoso , Estudos Prospectivos , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia , Testes Genéticos
2.
Adv Biol Regul ; 88: 100964, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37004354

RESUMO

Small cell lung cancer (SCLC) often exhibits Rb deficiency, TRß and p130 deletion, and SKP2 amplification, suggesting TRß inactivation and SKP2 activation. It is reported that SKP2 targeted therapy is effective in some cancers in vitro and in vivo, but it is not reported for the treatment of SCLC and retinoblastoma. SKP2 is the synthetic lethal gene in SCLC and retinoblastoma, so SKP2 can be used for targeted therapy in SCLC and retinoblastoma. RB1 knockout mice develop several kinds of tumors, but Rb1 and SKP2 double knockout mice are healthy, suggesting that SKP2 targeted therapy may have significant effects on Rb deficient cancers with less side effects, and if successful in SCLC and retinoblastoma in vitro and in animal model, such compounds may be promising for the clinical treatment of SCLC, retinoblastoma, and variety of Rb deficient cancers. Previously our studies showed that retinoblastomas exhibit retinal cone precursor properties and depend on cone-specific thyroid hormone receptor ß2 (TRß2) and SKP2 signaling. In this study, we sought to suppress SCLC and retinoblastoma cell growth by SKP2 inhibitors as a prelude to targeted therapy in vitro and in vivo. We knocked down TRß2 and SKP2 or over-expressed p27 in SCLC and retinoblastoma cell lines to investigate SKP2 and p27 signaling alterations. The SCLC cell lines H209 as well as retinoblastoma cell lines Y79, WERI, and RB177 were treated with SKP2 inhibitor C1 at different concentrations, following which Western blotting, Immunostaining, and cell cycle kinetics studies were performed to study SKP2 and p27 expression ubiquitination, to determine impact on cell cycle regulation and growth inhibition. TRß2 knockdown in Y79, RB177 and H209 caused SKP2 downregulation and degradation, p27 up-regulation, and S phase arrest, whereas, SKP2 knockdown or p27 over-expression caused p27 accumulation and G1-S phase arrest. In the cell lines Y79, WERI, RB177, and H209 treatment with C1 caused SKP2 ubiquitination and degradation, p27 de-ubiquitination and accumulation, and cell growth arrest. SKP2 inhibitor C1 significantly suppressed retinoblastoma as well as SCLC cell growth by SKP2 degradation and p27 accumulation. In vivo study also showed inhibition of tumor growth with C1 treatment. Potential limitations of the success of such a therapeutic approach and its translational application in human primary tumors, and alternative approaches to overcome such limitations are briefly discussed for the treatment of retinoblastoma, SCLC and other RB-related cancers.


Assuntos
Neoplasias da Retina , Retinoblastoma , Camundongos , Animais , Humanos , Retinoblastoma/tratamento farmacológico , Retinoblastoma/genética , Retinoblastoma/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Linhagem Celular Tumoral , Ciclo Celular , Camundongos Knockout , Pulmão/patologia
3.
Oncol Lett ; 25(1): 38, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36589665

RESUMO

Gliomas are the most common malignant primary brain tumors characterized by poor prognosis. The genotyping of tumors using next generation sequencing (NGS) platforms enables the identification of genetic alterations that constitute diagnostic, prognostic and predictive biomarkers. The present study investigated the molecular profile of 32 tumor samples from 32 patients with high-grade gliomas by implementing a broad 80-gene targeted NGS panel while reporting their clinicopathological characteristics and outcomes. Subsequently, 14 of 32 tumor specimens were also genotyped using a 55-gene NGS panel to validate the diagnostic accuracy and clinical utility of the extended panel. The median follow-up was 19.2 months. In total, 129 genetic alterations including 33 structural variants were identified in 38 distinct genes. Among 96 variants (single nucleotide variants and insertions and deletions), 38 were pathogenic and 58 variants of unknown clinical significance. TP53 was the most frequently mutated gene, followed by PTEN and IDH1 genes. Glioma patients with IDH1 mutant tumors were younger and had significantly longer overall survival compared to patients with wild-type IDH1 tumors. Similarly, tumors with TP53 mutations were more likely observed in younger patients with glioma. Subsequently, a comparison of mutational profiles of samples analyzed by both panels was also performed. Implementation of the comprehensive pan-cancer and the MOL panels resulted in the identification of 37 and 15 variants, respectively. Of those, 13 were common. Comprehensive pan-cancer panel identified 24 additional variants, 22 of which were located in regions that were not targeted by the MOL panel. By contrast, the MOL panel identified two additional variants. Overall, the present study demonstrated that using an extended tumor profile assay instead of a glioma-specific tumor profile panel identified additional genetic changes that may be taken into consideration as potential therapeutic targets for glioma diagnosis and molecular classification.

4.
Front Oncol ; 12: 855463, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402285

RESUMO

Introduction: The mechanisms underlying high drug resistance and relapse rates after multi-modal treatment in patients with colorectal cancer (CRC) and liver metastasis (LM) remain poorly understood. Objective: We evaluate the potential translational implications of intra-patient heterogeneity (IPH) comprising primary and matched metastatic intratumor heterogeneity (ITH) coupled with circulating tumor DNA (ctDNA) variability. Methods: A total of 122 multi-regional tumor and perioperative liquid biopsies from 18 patients were analyzed via targeted next-generation sequencing (NGS). Results: The proportion of patients with ITH were 53% and 56% in primary CRC and LM respectively, while 35% of patients harbored de novo mutations in LM indicating spatiotemporal tumor evolution and the necessity of multiregional analysis. Among the 56% of patients with alterations in liquid biopsies, de novo mutations in cfDNA were identified in 25% of patients, which were undetectable in both CRC and LM. All 17 patients with driver alterations harbored mutations targetable by molecularly targeted drugs, either approved or currently under evaluation. Conclusion: Our proof-of-concept prospective study provides initial evidence on potential clinical superiority of IPH and warrants the conduction of precision oncology trials to evaluate the clinical utility of I PH-driven matched therapy.

5.
Cancers (Basel) ; 13(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33429865

RESUMO

Our aim was to determine the prevalence, prognostic and predictive role of germline pathogenic/likely pathogenic variants (P/LPVs) in cancer predisposing genes in patients with pancreatic ductal adenocarcinoma (PDAC). Germline testing of 62 cancer susceptibility genes was performed on unselected patients diagnosed from 02/2003 to 01/2020 with PDAC, treated at Hellenic Cooperative Oncology Group (HeCOG)-affiliated Centers. The main endpoints were prevalence of P/LPVs and overall survival (OS). P/LPVs in PDAC-associated and homologous recombination repair (HRR) genes were identified in 22 (4.0%) and 42 (7.7%) of 549 patients, respectively. P/LPVs were identified in 16 genes, including ATM (11, 2.0%) and BRCA2 (6, 1.1%), while 19 patients (3.5%) were heterozygotes for MUTYH P/LPVs and 9 (1.6%) carried the low-risk allele, CHEK2 p.(Ile157Thr). Patients carrying P/LPVs had improved OS compared to non-carriers (22.6 vs. 13.9 months, p = 0.006). In multivariate analysis, there was a trend for improved OS in P/LPV carriers (p = 0.063). The interaction term between platinum exposure and mutational status of HRR genes was not significant (p-value = 0.35). A significant proportion of patients with PDAC carries clinically relevant germline P/LPVs, irrespectively of age, family history or disease stage. The predictive role of these P/LPVs has yet to be defined. ClinicalTrials.gov Identifier: NCT03982446.

6.
Blood ; 128(15): 1928-1939, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27554085

RESUMO

Enhancers are the primary determinants of cell identity, and specific promoter/enhancer combinations of Endoglin (ENG) have been shown to target blood and endothelium in the embryo. Here, we generated a series of embryonic stem cell lines, each targeted with reporter constructs driven by specific promoter/enhancer combinations of ENG, to evaluate their discriminative potential and value as molecular probes of the corresponding transcriptome. The Eng promoter (P) in combination with the -8/+7/+9-kb enhancers, targeted cells in FLK1 mesoderm that were enriched for blast colony forming potential, whereas the P/-8-kb enhancer targeted TIE2+/c-KIT+/CD41- endothelial cells that were enriched for hematopoietic potential. These fractions were isolated using reporter expression and their transcriptomes profiled by RNA-seq. There was high concordance between our signatures and those from embryos with defects at corresponding stages of hematopoiesis. Of the 6 genes that were upregulated in both hemogenic mesoderm and hemogenic endothelial fractions targeted by the reporters, LRP2, a multiligand receptor, was the only gene that had not previously been associated with hematopoiesis. We show that LRP2 is indeed involved in definitive hematopoiesis and by doing so validate the use of reporter gene-coupled enhancers as probes to gain insights into transcriptional changes that facilitate cell fate transitions.


Assuntos
Embrião de Mamíferos/metabolismo , Endoglina/metabolismo , Elementos Facilitadores Genéticos/fisiologia , Hematopoese/fisiologia , Sondas Moleculares/metabolismo , Animais , Linhagem Celular , Embrião de Mamíferos/citologia , Endoglina/genética , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Sondas Moleculares/genética , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo
7.
Cell Cycle ; 15(16): 2108-2114, 2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-27399214

RESUMO

The first hematopoietic cells are generated very early in ontogeny to support the growth of the embryo and to provide the foundation to the adult hematopoietic system. There is a considerable therapeutic interest in understanding how these first blood cells are generated in order to try to reproduce this process in vitro. This would allow generating blood products, or hematopoietic cell populations from embryonic stem (ES) cells, induced pluripotent stem cells or through directed reprogramming. Recent studies have clearly established that the first hematopoietic cells originate from a hemogenic endothelium (HE) through an endothelial to hematopoietic transition (EHT). The molecular mechanisms underlining this transition remain largely unknown with the exception that the transcription factor RUNX1 is critical for this process. In this Extra Views report, we discuss our recent studies demonstrating that the transcriptional repressors GFI1 and GFI1B have a critical role in the EHT. We established that these RUNX1 transcriptional targets are actively implicated in the downregulation of the endothelial program and the loss of endothelial identity during the formation of the first blood cells. In addition, our results suggest that GFI1 expression provides an ideal novel marker to identify, isolate and study the HE cell population.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Hemangioblastos/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Modelos Biológicos
8.
Cell Rep ; 15(10): 2185-2199, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27239041

RESUMO

It is now well-established that hematopoietic stem cells (HSCs) and progenitor cells originate from a specialized subset of endothelium, termed hemogenic endothelium (HE), via an endothelial-to-hematopoietic transition. However, the molecular mechanisms determining which endothelial progenitors possess this hemogenic potential are currently unknown. Here, we investigated the changes in hemogenic potential in endothelial progenitors at the early stages of embryonic development. Using an ETV2::GFP reporter mouse to isolate emerging endothelial progenitors, we observed a dramatic decrease in hemogenic potential between embryonic day (E)7.5 and E8.5. At the molecular level, Runx1 is expressed at much lower levels in E8.5 intra-embryonic progenitors, while Bmi1 expression is increased. Remarkably, the ectopic expression of Runx1 in these progenitors fully restores their hemogenic potential, as does the suppression of BMI1 function. Altogether, our data demonstrate that hemogenic competency in recently specified endothelial progenitors is restrained through the active silencing of Runx1 expression.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Desenvolvimento Embrionário , Células Progenitoras Endoteliais/metabolismo , Inativação Gênica , Hemangioblastos/citologia , Animais , Proteína Morfogenética Óssea 4/metabolismo , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Células Progenitoras Endoteliais/citologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/metabolismo , Hemangioblastos/metabolismo , Hematopoese/genética , Imunofenotipagem , Masculino , Camundongos Endogâmicos ICR , Análise de Sequência com Séries de Oligonucleotídeos , Complexo Repressor Polycomb 1/antagonistas & inibidores , Complexo Repressor Polycomb 1/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Análise de Célula Única , Proteínas Smad/metabolismo , Fatores de Transcrição/metabolismo
9.
Blood ; 127(11): 1493-501, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26755713

RESUMO

Lysyl oxidase (LOX) is overexpressed in various pathologies associated with thrombosis, such as arterial stenosis and myeloproliferative neoplasms (MPNs). LOX is elevated in the megakaryocytic lineage of mouse models of MPNs and in patients with MPNs. To gain insight into the role of LOX in thrombosis and platelet function without compounding the influences of other pathologies, transgenic mice expressing LOX in wild-type megakaryocytes and platelets (Pf4-Lox(tg/tg)) were generated. Pf4-Lox(tg/tg) mice had a normal number of platelets; however, time to vessel occlusion after endothelial injury was significantly shorter in Pf4-Lox(tg/tg) mice, indicating a higher propensity for thrombus formation in vivo. Exploring underlying mechanisms, we found that Pf4-Lox(tg/tg) platelets adhere better to collagen and have greater aggregation response to lower doses of collagen compared with controls. Platelet activation in response to the ligand for collagen receptor glycoprotein VI (cross-linked collagen-related peptide) was unaffected. However, the higher affinity of Pf4-Lox(tg/tg) platelets to the collagen sequence GFOGER implies that the collagen receptor integrin α2ß1 is affected by LOX. Taken together, our findings demonstrate that LOX enhances platelet activation and thrombosis.


Assuntos
Plaquetas/efeitos dos fármacos , Colágeno/farmacologia , Ativação Plaquetária/fisiologia , Proteína-Lisina 6-Oxidase/fisiologia , Trombofilia/enzimologia , Animais , Plaquetas/citologia , Lesões das Artérias Carótidas/complicações , Trombose das Artérias Carótidas/etiologia , Integrina alfa2beta1/fisiologia , Megacariócitos/enzimologia , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/farmacologia , Adesividade Plaquetária/genética , Adesividade Plaquetária/fisiologia , Agregação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/genética , Fator Plaquetário 4/genética , Regiões Promotoras Genéticas , Proteína-Lisina 6-Oxidase/genética , Ratos , Trombofilia/genética
10.
Development ; 142(19): 3307-20, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26293303

RESUMO

The molecular mechanisms orchestrating early mesoderm specification are still poorly understood. In particular, how alternate cell fate decisions are regulated in nascent mesoderm remains mostly unknown. In the present study, we investigated both in vitro in differentiating embryonic stem cells, and in vivo in gastrulating embryos, the lineage specification of early mesodermal precursors expressing or not the Forkhead transcription factor FOXF1. Our data revealed that FOXF1-expressing mesoderm is derived from FLK1(+) progenitors and that in vitro this transcription factor is expressed in smooth muscle and transiently in endothelial lineages, but not in hematopoietic cells. In gastrulating embryos, FOXF1 marks most extra-embryonic mesoderm derivatives including the chorion, the allantois, the amnion and a subset of endothelial cells. Similarly to the in vitro situation, FOXF1 expression is excluded from the blood islands and blood cells. Further analysis revealed an inverse correlation between hematopoietic potential and FOXF1 expression in vivo with increased commitment toward primitive erythropoiesis in Foxf1-deficient embryos, whereas FOXF1-enforced expression in vitro was shown to repress hematopoiesis. Altogether, our data establish that during gastrulation, FOXF1 marks all posterior primitive streak extra-embryonic mesoderm derivatives with the remarkable exception of the blood lineage. Our study further suggests that this transcription factor is implicated in actively restraining the specification of mesodermal progenitors to hematopoiesis.


Assuntos
Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Células-Tronco Hematopoéticas/citologia , Mesoderma/embriologia , Linhagem Celular , Citometria de Fluxo , Perfilação da Expressão Gênica , Técnicas de Transferência de Genes , Humanos , Imuno-Histoquímica , Análise em Microsséries , Plasmídeos/genética
11.
Cell Cycle ; 12(8): 1242-50, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23518500

RESUMO

Megakaryocytes (MKs), the platelet precursors, undergo an endomitotic cell cycle that leads to polyploidy. Lysyl oxidase propeptide (LOX-PP) is generated from lysyl oxidase (LOX) pro-enzyme after proteolytical cleavage. We recently reported that LOX, a known matrix cross-linking enzyme, contributes to MK lineage expansion. In addition, LOX expression levels are ploidy-dependent, with polyploidy MKs having minimal levels. This led us to test the effects of LOX-PP on the number and ploidy of primary MKs. LOX-PP significantly decreases mouse bone marrow MK ploidy coupled with a reduction in MK size. MK number is unchanged upon LOX-PP treatment. Analysis of LOX-PP- or vehicle-treated MKs by western blotting revealed a reduction in ERK1/2 phosphorylation and in the levels of its downstream targets, cyclin D3 and cyclin E, which are known to play a central role in MK endomitosis. Pull-down assays and immunochemistry staining indicated that LOX-PP interacts with α-tubulin and the mictotubules, which can contribute to decreased MK ploidy. Thus, our findings defined a role for LOX-PP in reducing MK ploidy. This suggests that high-level expression of LOX in aberrantly proliferating MKs could play a part in inhibiting their polyploidization via LOX-PP.


Assuntos
Ciclo Celular/fisiologia , Megacariócitos/efeitos dos fármacos , Poliploidia , Precursores de Proteínas/farmacologia , Proteína-Lisina 6-Oxidase/farmacologia , Animais , Western Blotting , Linhagem da Célula/fisiologia , Ciclina D3/metabolismo , Ciclina E/metabolismo , Imunofluorescência , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Megacariócitos/citologia , Camundongos , Fosforilação/efeitos dos fármacos , Precursores de Proteínas/metabolismo , Proteína-Lisina 6-Oxidase/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Dev Dyn ; 241(9): 1454-64, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22733530

RESUMO

BACKGROUND: ETV2 has been identified as an important player in embryonic hematopoiesis. However, the cell populations in which this transcription factor is expressed and operates during blood specification remain to be fully characterized. Here we address these issues using ES cells and a transgenic mouse line expressing green fluorescent protein (GFP) under the control of ETV2 regulatory elements, allowing us to observe the tight association between ETV2 expression and the initiation of hematopoiesis. RESULTS: Both in differentiating ES cells and gastrulating embryos ETV2::GFP is mostly found co-expressed with endothelial markers and defines a subset of cells with greatly enriched primitive erythroid potential. Upon culture ETV2::GFP cells rapidly up-regulate CD41, down-regulate endothelium cell surface markers and generate definitive hematopoietic progenitors. Altogether these characteristics represent the hallmark of hemogenic endothelium cells, a specialized endothelium originating from the hemangioblast and giving rise to hematopoietic cells. Importantly, ETV2 deficiency results in a complete absence of hemogenic endothelium in differentiating ES cells and gastrulating embryos. CONCLUSIONS: Altogether our data reveal that ETV2 marks hemogenic endothelium in gastrulating embryos and is absolutely required for the formation of this precursor at the onset of hematopoiesis. These results enhance our understanding of embryonic hematopoiesis and the factors driving hemogenic endothelium specification.


Assuntos
Endotélio Vascular/embriologia , Hemangioblastos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Fatores de Transcrição/genética , Animais , Biomarcadores/metabolismo , Sangue/metabolismo , Embrião de Mamíferos , Endotélio Vascular/metabolismo , Gastrulação/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hemangioblastos/fisiologia , Hematopoese/genética , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Camundongos , Camundongos Transgênicos , Neovascularização Fisiológica/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Transgenes , Estudos de Validação como Assunto
13.
J Cell Physiol ; 227(10): 3355-62, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22331622

RESUMO

Reactive oxygen species (ROS), generated as a result of various reactions, control an array of cellular processes. The role of ROS during megakaryocyte (MK) development has been a subject of interest and research. The bone marrow niche is a site of MK differentiation and maturation. In this environment, a gradient of oxygen tension, from normoxia to hypoxia results in different levels of ROS, impacting cellular physiology. This article provides an overview of major sources of ROS, their implication in different signaling pathways, and their effect on cellular physiology, with a focus on megakaryopoiesis. The importance of ROS-generating oxidases in MK biology and pathology, including myelofibrosis, is also described.


Assuntos
Hematopoese/fisiologia , Megacariócitos/metabolismo , Oxirredutases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Humanos , Megacariócitos/citologia
14.
J Biol Chem ; 286(31): 27630-8, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21665949

RESUMO

Lysyl oxidase (LOX), a matrix cross-linking protein, is known to be selectively expressed and to enhance a fibrotic phenotype. A recent study of ours showed that LOX oxidizes the PDGF receptor-ß (PDGFR-ß), leading to amplified downstream signaling. Here, we examined the expression and functions of LOX in megakaryocytes (MKs), the platelet precursors. Cells committed to the MK lineage undergo mitotic proliferation to yield diploid cells, followed by endomitosis and acquisition of polyploidy. Intriguingly, LOX expression is detected in diploid-tetraploid MKs, but scarce in polyploid MKs. PDGFR-BB is an inducer of mitotic proliferation in MKs. LOX inhibition with ß-aminopropionitrile reduces PDGFR-BB binding to cells and downstream signaling, as well as its proliferative effect on the MK lineage. Inhibition of LOX activity has no influence on MK polyploidy. We next rationalized that, in a system with an abundance of low ploidy MKs, LOX could be highly expressed and with functional significance. Thus, we resorted to GATA-1(low) mice, where there is an increase in low ploidy MKs, augmented levels of PDGF-BB, and an extensive matrix of fibers. MKs from these mice display high expression of LOX, compared with control mice. Importantly, treatment of GATA-1(low) mice with ß-aminopropionitrile significantly improves the bone marrow fibrotic phenotype, and MK number in the spleen. Thus, our in vitro and in vivo data support a novel role for LOX in regulating MK expansion by PDGF-BB and suggest LOX as a new potential therapeutic target for myelofibrosis.


Assuntos
Medula Óssea/patologia , Megacariócitos/citologia , Mielofibrose Primária/patologia , Proteína-Lisina 6-Oxidase/metabolismo , Animais , Western Blotting , Divisão Celular , Citometria de Fluxo , Imunofluorescência , Masculino , Megacariócitos/enzimologia , Camundongos , Poliploidia , Mielofibrose Primária/terapia , Proteína-Lisina 6-Oxidase/antagonistas & inibidores , RNA Mensageiro/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo
15.
J Biol Chem ; 285(24): 18909-17, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20392692

RESUMO

Megakaryocytes are platelet precursor cells that undergo endomitosis. During this process, repeated rounds of DNA synthesis are characterized by lack of late anaphase and cytokinesis. Physiologically, the majority of the polyploid megakaryocytes in the bone marrow are cell cycle arrested. As previously reported, cyclin E is essential for megakaryocyte polyploidy; however, it has remained unclear whether up-regulated cyclin E is an inducer of polyploidy in vivo. We found that cyclin E is up-regulated upon stimulation of primary megakaryocytes by thrombopoietin. Transgenic mice in which elevated cyclin E expression is targeted to megakaryocytes display an increased ploidy profile. Examination of S phase markers, specifically proliferating cell nuclear antigen, cyclin A, and 5-bromo-2-deoxyuridine reveals that cyclin E promotes progression to S phase and cell cycling. Interestingly, analysis of Cdc6 and Mcm2 indicates that cyclin E mediates its effect by promoting the expression of components of the pre-replication complex. Furthermore, we show that up-regulated cyclin E results in the up-regulation of cyclin B1 levels, suggesting an additional mechanism of cyclin E-mediated ploidy increase. These findings define a key role for cyclin E in promoting megakaryocyte entry into S phase and hence, increase in the number of cell cycling cells and in augmenting polyploidization.


Assuntos
Ciclina E/química , DNA/química , Regulação da Expressão Gênica , Megacariócitos/metabolismo , Animais , Plaquetas/metabolismo , Medula Óssea/metabolismo , Ciclina B1/metabolismo , Ciclinas/metabolismo , Desoxiuridina/análogos & derivados , Desoxiuridina/metabolismo , Camundongos , Camundongos Transgênicos , Poliploidia , Fase S , Trombopoetina/metabolismo
16.
Blood ; 114(6): 1243-9, 2009 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-19471020

RESUMO

Megakaryocytes (MKs) undergo an endomitotic cell cycle, leading to polyploidy. We examined the expression of the flavoproteins and oxidative stress-promoting enzymes, NADPH oxidases (Nox's), in MKs because of their known role in promoting the cell cycle. Although the expression of Nox isoforms varies between cell types, they are induced at the mRNA level by mitogenic stimuli. Western blotting or reverse transcription-polymerase chain reaction of purified mouse MKs isolated from thrombopoietin (TPO)-treated bone marrow (BM) cultures indicated high expression of Nox1, a weak expression of Nox4, and no significant expression of Nox2. Immunofluorescence of freshly isolated MKs confirmed strong expression of Nox1 in one-third of MKs, whereas Nox1 staining was detected in nearly all MKs in TPO-stimulated BM cultures. Treatment of mouse BM cultures with Nox inhibitors resulted in accumulation of MKs with low DNA content levels and significant reduction of higher ploidy MKs. Purified, Nox-inhibited MKs showed a notable decrease in the level of the G(1) phase cyclin E, a cyclin associated with MK polyploidy, and its up-regulation restored most of the effect of Nox inhibitors. Hence, this study shows the expression of Nox isoforms in MKs and highlights a potential role of flavoproteins in promoting polyploidization in this lineage.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Megacariócitos/enzimologia , Glicoproteínas de Membrana/biossíntese , NADH NADPH Oxirredutases/biossíntese , NADPH Oxidases/biossíntese , Ploidias , Animais , Medula Óssea/enzimologia , Inibidores Enzimáticos/farmacologia , Fase G1/efeitos dos fármacos , Fase G1/fisiologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Isoenzimas/biossíntese , Camundongos , Camundongos Knockout , NADPH Oxidase 1 , NADPH Oxidase 2 , NADPH Oxidase 4 , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Trombopoetina/farmacologia , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA