Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brain ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38848546

RESUMO

Intracellular trafficking involves an intricate machinery of motor complexes including the dynein complex to shuttle cargo for autophagolysosomal degradation. Deficiency in dynein axonemal chains as well as cytoplasmic light and intermediate chains have been linked with ciliary dyskinesia and skeletal dysplasia. The cytoplasmic dynein 1 heavy chain protein (DYNC1H1) serves as a core complex for retrograde trafficking in neuronal axons. Dominant pathogenic variants in DYNC1H1 have been previously implicated in peripheral neuromuscular disorders (NMD) and neurodevelopmental disorders (NDD). As heavy-chain dynein is ubiquitously expressed, the apparent selectivity of heavy-chain dyneinopathy for motor neuronal phenotypes remains currently unaccounted for. Here, we aimed to evaluate the full DYNC1H1-related clinical, molecular and imaging spectrum, including multisystem features and novel phenotypes presenting throughout life. We identified 47 cases from 43 families with pathogenic heterozygous variants in DYNC1H1 (aged 0-59 years) and collected phenotypic data via a comprehensive standardized survey and clinical follow-up appointments. Most patients presented with divergent and previously unrecognized neurological and multisystem features, leading to significant delays in genetic testing and establishing the correct diagnosis. Neurological phenotypes include novel autonomic features, previously rarely described behavioral disorders, movement disorders, and periventricular lesions. Sensory neuropathy was identified in nine patients (median age of onset 10.6 years), of which five were only diagnosed after the second decade of life, and three had a progressive age-dependent sensory neuropathy. Novel multisystem features included primary immunodeficiency, bilateral sensorineural hearing loss, organ anomalies, and skeletal manifestations, resembling the phenotypic spectrum of other dyneinopathies. We also identified an age-dependent biphasic disease course with developmental regression in the first decade and, following a period of stability, neurodegenerative progression after the second decade of life. Of note, we observed several cases in whom neurodegeneration appeared to be prompted by intercurrent systemic infections with double-stranded DNA viruses (Herpesviridae) or single-stranded RNA viruses (Ross-River fever, SARS-CoV-2). Moreover, the disease course appeared to be exacerbated by viral infections regardless of age and/or severity of NDD manifestations, indicating a role of dynein in anti-viral immunity and neuronal health. In summary, our findings expand the clinical, imaging, and molecular spectrum of pathogenic DYNC1H1 variants beyond motor neuropathy disorders and suggest a life-long continuum and age-related progression due to deficient intracellular trafficking. This study will facilitate early diagnosis and improve counselling and health surveillance of affected patients.

2.
medRxiv ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38496416

RESUMO

The ADAT2/ADAT3 complex catalyzes the adenosine to inosine modification at the wobble position of eukaryotic tRNAs. Mutations in ADAT3 , the catalytically inactive subunit of the ADAT2/ADAT3 complex, have been identified in patients presenting with severe neurodevelopmental disorders (NDDs). Yet, the physiological function of ADAT2/ADAT3 complex during brain development remains totally unknown. Here we showed that maintaining a proper level of ADAT2/ADAT3 catalytic activity is required for correct radial migration of projection neurons in the developing mouse cortex. In addition, we not only reported 7 new NDD patients carrying biallelic variants in ADAT3 but also deeply characterize the impact of those variants on ADAT2/ADAT3 structure, biochemical properties, enzymatic activity and tRNAs editing and abundance. We demonstrated that all the identified variants alter both the expression and the activity of the complex leading to a significant decrease of I 34 with direct consequence on their steady-state. Using in vivo complementation assays, we correlated the severity of the migration phenotype with the degree of the loss of function caused by the variants. Altogether, our results indicate a critical role of ADAT2/ADAT3 during cortical development and provide cellular and molecular insights into the pathogenicity of ADAT3-related neurodevelopmental disorder.

3.
JIMD Rep ; 64(3): 238-245, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37151359

RESUMO

Classical homocystinuria (HCU) is caused by cystathionine ß-synthase deficiency leading to impaired homocysteine transsulfuration and accumulation of homocysteine and methionine. Patients present with a wide spectrum of manifestations including ocular, skeletal, neuropsychiatric, and vascular manifestations. We report a 48-year-old female with pyridoxine-unresponsive HCU treated with betaine, cyanocobalamin, and folate. Her diet was non-restricted due to intolerance of low-methionine diet. She was admitted to hospital following a fall, with multiple fractures and subsequently developed acute liver failure with encephalopathy. Shock, sepsis, and liver ischaemia/thrombosis were excluded. In the context of glutathione depletion expected in HCU, hepatic dysfunction was presumed to be due to iatrogenic paracetamol toxicity, despite paracetamol intake at conventional therapeutic dose, with role of hypermethioninemia as a contributing factor being uncertain. Betaine was discontinued on hospital admission. N-Acetylcysteine (NAC) infusion was initiated. Plasma total homocysteine (tHcy) was 3.4 µmol/L 9 days following initiation of NAC treatment with a markedly elevated plasma methionine of 1278 µmol/L. tHcy concentration returned to pre-admission baseline after NAC was discontinued. Recovery following this episode was slow with a prolonged cholestatic phase and gradual improvement in jaundice and coagulopathy. We recommend that paracetamol should be administered cautiously in HCU patients due to underlying glutathione depletion and risk of toxicity even at therapeutic doses. NAC is clearly effective in lowering tHcy in classical HCU in the short-term however further research is required to assess clinical efficacy and use as a potential therapy in classical HCU.

4.
Ann Hum Genet ; 87(4): 166-173, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36916508

RESUMO

INTRODUCTION: Congenital sideroblastic anemias (CSAs) are a group of inherited bone-marrow disorders manifesting with erythroid hyperplasia and ineffective erythropoiesis. METHODS: We describe a detailed clinical and genetic characterization of three siblings with CSA. RESULTS: Two of them had limb-girdle myopathy and global developmental delay. The two elder siblings performed allogenic hematopoietic stem-cell transplantation 5 and 3 years prior with stabilization of the hematological features. Exome sequencing in the non-transplanted sibling revealed a novel homozygous nonsense variant in SLC25A38 gene NM_017875.2:c.559C > T; p.(Arg187*) causing autosomal-recessive sideroblastic anemia type-2, and a second homozygous pathogenic previously reported variant in GMPPB gene NM_013334.3:c.458C > T; p.(Thr153Ile) causing autosomal-recessive muscular dystrophy-dystroglycanopathy type B14. With the established diagnosis, hematopoietic stem cell transplantation is now being scheduled for the youngest sibling, and a trial therapy with acetylcholine esterase inhibitors was started for the two neurologically affected patients with partial clinical improvement. CONCLUSION: This family emphasizes the importance of whole-exome sequencing for familial cases with complex phenotypes and vague neurological manifestations.


Assuntos
Anemia Sideroblástica , Humanos , Anemia Sideroblástica/genética , Anemia Sideroblástica/diagnóstico , Anemia Sideroblástica/patologia , Irmãos , Genótipo , Fenótipo , Mutação
5.
Pediatr Nephrol ; 37(7): 1555-1566, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34791528

RESUMO

BACKGROUND: Nephropathic cystinosis is a rare autosomal recessive lysosomal storage disorder characterized by kidney and extra-renal complications due to the accumulation of cystine crystals in various tissues and organs. Herein, we describe the early neuromuscular complications in a cohort of pediatric nephropathic cystinosis patients. METHODS: We prospectively evaluated the clinical, biochemical, and neurophysiological data of 15 cystinosis patients. Neurophysiological evaluation was performed to confirm or exclude presence of neuropathy and/or myopathy. RESULTS: Patients' age ranged between 20 and 216 months at time of examination. Nine patients were males. Three patients had early abnormal neurophysiological features consistent with neuromuscular involvement (clinically asymptomatic proximal myopathy with a patchy distribution in one patient and isolated asymptomatic sensory nerve conduction changes in two patients). A fourth patient had mixed abnormal motor and sensory axonal neuropathic changes associated with overt clinical features (predominantly motor symptoms). Patients with abnormal neuromuscular features were significantly older in age than the unaffected group (P = 0.005) and had a diagnosis of cystinosis with subsequent cysteamine therapy at a significantly older age than the unaffected group (P = 0.027 and 0.001, respectively). CONCLUSIONS: We expanded the recognized phenotypes of cystinosis neuromuscular complications with early proximal skeletal myopathy and symptomatic motor and sensory axonal neuropathy. Early asymptomatic neuromuscular complications could develop in pediatric patients and would require neurophysiological studies for early detection prior to development of overt clinical manifestations. Prompt diagnosis and timely initiation of cysteamine therapy with recommended dose can delay the development of neuromuscular complications. A higher resolution version of the Graphical abstract is available as Supplementary information.


Assuntos
Cistinose , Síndrome de Fanconi , Doenças Musculares , Adolescente , Criança , Estudos de Coortes , Cisteamina/uso terapêutico , Cistinose/complicações , Cistinose/diagnóstico , Cistinose/tratamento farmacológico , Feminino , Humanos , Masculino , Doenças Musculares/induzido quimicamente , Doenças Musculares/complicações
6.
Am J Med Genet A ; 173(10): 2697-2702, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28815891

RESUMO

Walker-Warburg syndrome (WWS) is a severe form of congenital muscular dystrophy secondary to α-dystroglycanopathy with muscle, brain, and eye abnormalities often leading to death in the first weeks of life. It is transmitted in an autosomal recessive pattern, and has been linked to at least 15 different genes; including protein O-mannosyltransferase 1 (POMT1), protein O-mannosyltransferase 2 (POMT2), protein O-mannose beta-1,2-N acetylglucosaminyltransferase (POMGNT1), fukutin (FKTN), isoprenoid synthase domain-containing protein (ISPD), and other genes. We report on a consanguineous family with four consecutive siblings affected by this condition with lethal outcome in three (still birth), and termination of the fourth pregnancy based on antenatal MRI identification of brain and kidney anomalies that heralded proper and deep clinical phenotyping. The diagnosis of WWS was suggested based on the unique collective phenotype comprising brain anomalies in the form of lissencephaly, subcortical/subependymal heterotopia, and cerebellar hypoplasia shared by all four siblings; microphthalmia in one sibling; and large cystic kidneys in the fetus and another sibling. Other unshared neurological abnormalities included hydrocephalus and Dandy-Walker malformation. Whole exome sequencing of the fetus revealed a highly conserved missense mutation in POMT2 that is known to cause WWS with brain and eye anomalies.In conclusion, the heterogeneous clinical presentation in the four affected conceptions with POMT2 mutation expands the current clinical spectrum of POMT2-associated WWS to include large cystic kidneys; and confirms intra-familial variability in terms of brain, kidney, and eye anomalies.


Assuntos
Doenças Fetais/patologia , Doenças Renais Císticas/patologia , Manosiltransferases/genética , Mutação de Sentido Incorreto , Síndrome de Walker-Warburg/complicações , Feminino , Doenças Fetais/genética , Predisposição Genética para Doença , Humanos , Doenças Renais Císticas/etiologia , Masculino , Linhagem , Fenótipo , Gravidez , Irmãos , Síndrome de Walker-Warburg/genética , Sequenciamento do Exoma/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA