Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuro Oncol ; 26(3): 553-568, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-37702430

RESUMO

BACKGROUND: Diffuse midline gliomas (DMG) are pediatric tumors with negligible 2-year survival after diagnosis characterized by their ability to infiltrate the central nervous system. In the hope of controlling the local growth and slowing the disease, all patients receive radiotherapy. However, distant progression occurs frequently in DMG patients. Current clues as to what causes tumor infiltration circle mainly around the tumor microenvironment, but there are currently no known determinants to predict the degree of invasiveness. METHODS: In this study, we use patient-derived glioma stem cells (GSCs) to create patient-specific 3D avatars to model interindividual invasion and elucidate the cellular supporting mechanisms. RESULTS: We show that GSC models in 3D mirror the invasive behavior of the parental tumors, thus proving the ability of DMG to infiltrate as an autonomous characteristic of tumor cells. Furthermore, we distinguished 2 modes of migration, mesenchymal and ameboid-like, and associated the ameboid-like modality with GSCs derived from the most invasive tumors. Using transcriptomics of both organoids and primary tumors, we further characterized the invasive ameboid-like tumors as oligodendrocyte progenitor-like, with highly contractile cytoskeleton and reduced adhesion ability driven by crucial over-expression of bone morphogenetic pathway 7 (BMP7). Finally, we deciphered MEK, ERK, and Rho/ROCK kinases activated downstream of the BMP7 stimulation as actionable targets controlling tumor cell motility. CONCLUSIONS: Our findings identify 2 new therapeutic avenues. First, patient-derived GSCs represent a predictive tool for patient stratification in order to adapt irradiation strategies. Second, autocrine and short-range BMP7-related signaling becomes a druggable target to prevent DMG spread and metastasis.


Assuntos
Neoplasias Encefálicas , Glioma , Criança , Humanos , Neoplasias Encefálicas/patologia , Glioma/patologia , Transdução de Sinais , Microambiente Tumoral
2.
Adv Sci (Weinh) ; 8(17): e2101614, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34250755

RESUMO

Under conditions of starvation, normal and tumor epithelial cells can rewire their metabolism toward the consumption of extracellular proteins, including extracellular matrix-derived components as nutrient sources. The mechanism of pericellular matrix degradation by starved cells has been largely overlooked. Here it is shown that matrix degradation by breast and pancreatic tumor cells and patient-derived xenograft explants increases by one order of magnitude upon amino acid and growth factor deprivation. In addition, it is found that collagenolysis requires the invadopodia components, TKS5, and the transmembrane metalloproteinase, MT1-MMP, which are key to the tumor invasion program. Increased collagenolysis is controlled by mTOR repression upon nutrient depletion or pharmacological inhibition by rapamycin. The results reveal that starvation hampers clathrin-mediated endocytosis, resulting in MT1-MMP accumulation in arrested clathrin-coated pits. The study uncovers a new mechanism whereby mTOR repression in starved cells leads to the repurposing of abundant plasma membrane clathrin-coated pits into robust ECM-degradative assemblies.


Assuntos
Aminoácidos/metabolismo , Neoplasias da Mama/metabolismo , Endocitose , Matriz Extracelular/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos
3.
J Cell Biol ; 216(11): 3509-3520, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28931556

RESUMO

Cancer-associated fibroblasts (CAFs) are the most abundant cells of the tumor stroma. Their capacity to contract the matrix and induce invasion of cancer cells has been well documented. However, it is not clear whether CAFs remodel the matrix by other means, such as degradation, matrix deposition, or stiffening. We now show that CAFs assemble fibronectin (FN) and trigger invasion mainly via integrin-αvß3. In the absence of FN, contractility of the matrix by CAFs is preserved, but their ability to induce invasion is abrogated. When degradation is impaired, CAFs retain the capacity to induce invasion in an FN-dependent manner. The level of expression of integrins αv and ß3 and the amount of assembled FN are directly proportional to the invasion induced by fibroblast populations. Our results highlight FN assembly and integrin-αvß3 expression as new hallmarks of CAFs that promote tumor invasion.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Comunicação Celular , Movimento Celular , Neoplasias do Colo/metabolismo , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Integrina beta3/metabolismo , Animais , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Neoplasias do Colo/patologia , Integrina alfaV/genética , Integrina alfaV/metabolismo , Integrina alfaVbeta3/genética , Integrina alfaVbeta3/metabolismo , Camundongos , Invasividade Neoplásica , Proteólise , Interferência de RNA , Transdução de Sinais , Transfecção , Células Tumorais Cultivadas
4.
Science ; 356(6343)2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28619886

RESUMO

Migrating cells often use focal adhesions in order to move. Focal adhesions are less prominent in cells migrating in three-dimensional (3D) as compared with 2D environments. We looked for alternative adhesion structures supporting cell migration. We analyzed the dynamics of clathrin-coated pits in cells migrating in a 3D environment of collagen fibers. Both topological cues and local engagement of integrins triggered the accumulation of clathrin-coated structures on fibers. Clathrin/adaptor protein 2 (AP-2) lattices pinched collagen fibers by adopting a tube-like morphology and regulated adhesion to fibers in an endocytosis-independent manner. During migration, tubular clathrin/AP-2 lattices stabilized cellular protrusions by providing anchoring points to collagen fibers. Thus, tubular clathrin/AP-2 lattices promote cell adhesion that, in coordination with focal adhesions, supports cell migration in 3D.


Assuntos
Complexo 2 de Proteínas Adaptadoras/metabolismo , Movimento Celular/fisiologia , Clatrina/metabolismo , Colágeno/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Extensões da Superfície Celular/metabolismo , Extensões da Superfície Celular/ultraestrutura , Humanos , Integrinas/metabolismo , Transporte Proteico
5.
Cancer Res ; 77(13): 3431-3441, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28536280

RESUMO

The interaction between circulating tumor cells (CTC) and endothelial cells during extravasation is a critical process during metastatic colonization, but its mechanisms remain poorly characterized. Here we report that the luminal side of liver blood vessels contains fibronectin deposits that are enriched in mice bearing primary tumors and are also present in vessels from human livers affected with metastases. Cancer cells attached to endothelial fibronectin deposits via talin1, a major component of focal adhesions. Talin1 depletion impaired cancer cell adhesion to the endothelium and transendothelial migration, resulting in reduced liver metastasis formation in vivo Talin1 expression levels in patient CTC's correlated with prognosis and therapy response. Together, our findings uncover a new mechanism for liver metastasis formation involving an active contribution of hepatic vascular fibronectin and talin1 in cancer cells. Cancer Res; 77(13); 3431-41. ©2017 AACR.


Assuntos
Fibronectinas/metabolismo , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/patologia , Células Neoplásicas Circulantes/patologia , Animais , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Nus , Metástase Neoplásica , Migração Transendotelial e Transepitelial
6.
Eur J Cell Biol ; 91(11-12): 930-7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22939225

RESUMO

During metastasis, cancer cells breach the basement membrane and migrate through the stroma mostly composed of a network of collagen I fibers. Cell migration on 2D is initiated by protrusion of the cell membrane followed by formation of adhesions that link the actin cytoskeleton to the extracellular matrix (ECM). Cells then move forwards by exerting traction forces on the adhesions at its front and by disassembling adhesions at the rear. In 2D, only the ventral surface of a migrating cell is in contact with the ECM, where cell-matrix adhesions are assembled. In 3D matrices, even though the whole surface of a migrating cell is available for interacting with the ECM, it is unclear whether discrete adhesion structures actually exist. Using high-resolution confocal microscopy we imaged the endogenous adhesome proteins in three different cancer cell types embedded in non-pepsinized collagen type I, polymerized at a slow rate, to allow the formation of a network that resembles the organization of EMC observed in vivo. Vinculin aggregates were detected in the cellular protrusions, frequently colocalizing with collagen fibers, implying they correspond to adhesion structures in 3D. As the distance from the substrate bottom increases, adhesion aggregates become smaller and almost undetectable in some cell lines. Using intravital imaging we show here, for the first time, the existence of adhesome proteins aggregates in vivo. These aggregates share similarities with the ones found in 3D collagen matrices. It still remains to be determined if adhesions assembled in 3D and in vivo share functional similarities to the well-described adhesions in 2D. This will provide a major step forward in understanding cell migration in more physiological environments.


Assuntos
Adesão Celular , Colágeno Tipo I/química , Neoplasias/ultraestrutura , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Adesões Focais/metabolismo , Adesões Focais/ultraestrutura , Células HCT116 , Humanos , Conformação Molecular , Vinculina/metabolismo
7.
Mol Biol Cell ; 15(10): 4725-34, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15282342

RESUMO

Fibroblast growth factor (FGF)-1 and -2 have potent biological activities implicated in malignant tumor development. Their autocrine and nonautocrine activity in tumor progression of carcinoma was investigated in the NBT-II cell system. Cells were manipulated to either produce and be autocrine for FGF-1 or -2 or to only produce but not respond to these factors. The autocrine cells are highly invasive and tumorigenic and the determination of specific targets of FGF/fibroblast growth factor receptor (FGFR) signaling was assessed. In vitro studies showed that nonautocrine cells behave like epithelial parental cells, whereas autocrine cells have a mesenchymal phenotype correlated with the overexpression of urokinase plasminogen activator receptor (uPAR), the internalization of E-cadherin, and the redistribution of beta-catenin from the cell surface to the cytoplasm and nucleus. uPAR was defined as an early target, whereas E-cadherin and the leukocyte common antigen-related protein-tyrosine phosphatase (LAR-PTP) were later targets of FGF signaling, with FGFR1 activation more efficient than FGFR2 at modulating these targets. Behavior of autocrine cells was consistent with a decrease of tumor-suppressive activities of both E-cadherin and LAR-PTP. These molecular analyses show that the potential of these two growth factors in tumor progression is highly dependent on specific FGFR signaling and highlights its importance as a target for antitumor therapy.


Assuntos
Carcinoma/metabolismo , Fator 1 de Crescimento de Fibroblastos/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/fisiologia , Animais , Comunicação Autócrina , Caderinas/metabolismo , Linhagem Celular Tumoral , Forma Celular , Proteínas do Citoesqueleto/metabolismo , Desmoplaquinas , Invasividade Neoplásica , Ratos , Receptores de Superfície Celular/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Transativadores/metabolismo , beta Catenina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA