Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Methods ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969721

RESUMO

The systematic determination of protein function is a key goal of modern biology, but remains challenging with current approaches. Here we present ORFtag, a versatile, cost-effective and highly efficient method for the massively parallel tagging and functional interrogation of proteins at the proteome scale. ORFtag uses retroviral vectors bearing a promoter, peptide tag and splice donor to generate fusions between the tag and endogenous open reading frames (ORFs). We demonstrate the utility of ORFtag through functional screens for transcriptional activators, repressors and posttranscriptional regulators in mouse embryonic stem cells. Each screen recovers known and identifies new regulators, including long ORFs inaccessible by other methods. Among other hits, we find that Zfp574 is a highly selective transcriptional activator and that oncogenic fusions often function as transactivators.

2.
Nat Commun ; 15(1): 5266, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902237

RESUMO

Functionally characterizing the genetic alterations that drive pancreatic cancer is a prerequisite for precision medicine. Here, we perform somatic CRISPR/Cas9 mutagenesis screens to assess the transforming potential of 125 recurrently mutated pancreatic cancer genes, which revealed USP15 and SCAF1 as pancreatic tumor suppressors. Mechanistically, we find that USP15 functions in a haploinsufficient manner and that loss of USP15 or SCAF1 leads to reduced inflammatory TNFα, TGF-ß and IL6 responses and increased sensitivity to PARP inhibition and Gemcitabine. Furthermore, we find that loss of SCAF1 leads to the formation of a truncated, inactive USP15 isoform at the expense of full-length USP15, functionally coupling SCAF1 and USP15. Notably, USP15 and SCAF1 alterations are observed in 31% of pancreatic cancer patients. Our results highlight the utility of in vivo CRISPR screens to integrate human cancer genomics and mouse modeling for the discovery of cancer driver genes with potential prognostic and therapeutic implications.


Assuntos
Sistemas CRISPR-Cas , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Gencitabina , Regulação Neoplásica da Expressão Gênica , Mutação , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo
3.
EMBO Mol Med ; 15(7): e16758, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37226685

RESUMO

FAM3C/ILEI is an important cytokine for tumor progression and metastasis. However, its involvement in inflammation remains elusive. Here, we show that ILEI protein is highly expressed in psoriatic lesions. Inducible keratinocyte-specific ILEI overexpression in mice (K5-ILEIind ) recapitulates many aspects of psoriasis following TPA challenge, primarily manifested by impaired epidermal differentiation and increased neutrophil recruitment. Mechanistically, ILEI triggers Erk and Akt signaling, which then activates STAT3 via Ser727 phosphorylation. Keratinocyte-specific ILEI deletion ameliorates TPA-induced skin inflammation. A transcriptomic ILEI signature obtained from the K5-ILEIind model shows enrichment in several signaling pathways also found in psoriasis and identifies urokinase as a targetable enzyme to counteract ILEI activity. Pharmacological inhibition of urokinase in TPA-induced K5-ILEIind mice results in significant improvement of psoriasiform symptoms by reducing ILEI secretion. The ILEI signature distinguishes psoriasis from healthy skin with uPA ranking among the top "separator" genes. Our study identifies ILEI as a key driver in psoriasis, indicates the relevance of ILEI-regulated genes for disease manifestation, and shows the clinical impact of ILEI and urokinase as novel potential therapeutic targets in psoriasis.


Assuntos
Psoríase , Ativador de Plasminogênio Tipo Uroquinase , Camundongos , Animais , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Citocinas/metabolismo , Queratinócitos , Transdução de Sinais
5.
EMBO Mol Med ; 15(3): e16959, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36740985

RESUMO

The natural compound Artemisinin is the most widely used antimalarial drug worldwide. Based on its cytotoxicity, it is also used for anticancer therapy. Artemisinin and its derivates are endoperoxides that damage proteins in eukaryotic cells; their definite mechanism of action and host cell targets, however, have remained largely elusive. Using yeast and haploid stem cell screening, we demonstrate that a single cellular pathway, namely porphyrin (heme) biosynthesis, is required for the cytotoxicity of Artemisinins. Genetic or pharmacological modulation of porphyrin production is sufficient to alter its cytotoxicity in eukaryotic cells. Using multiple model systems of human brain tumor development, such as cerebral glioblastoma organoids, and patient-derived tumor spheroids, we sensitize cancer cells to dihydroartemisinin using the clinically approved porphyrin enhancer and surgical fluorescence marker 5-aminolevulinic acid, 5-ALA. A combination treatment of Artemisinins and 5-ALA markedly and specifically killed brain tumor cells in all model systems tested, including orthotopic patient-derived xenografts in vivo. These data uncover the critical molecular pathway for Artemisinin cytotoxicity and a sensitization strategy to treat different brain tumors, including drug-resistant human glioblastomas.


Assuntos
Antimaláricos , Artemisininas , Neoplasias Encefálicas , Humanos , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Antimaláricos/farmacologia , Heme/metabolismo , Ácido Aminolevulínico , Neoplasias Encefálicas/tratamento farmacológico
6.
Nat Methods ; 17(7): 708-716, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32514112

RESUMO

CRISPR-Cas9 screens have emerged as a transformative approach to systematically probe gene functions. The quality and success of these screens depends on the frequencies of loss-of-function alleles, particularly in negative-selection screens widely applied for probing essential genes. Using optimized screening workflows, we performed essentialome screens in cancer cell lines and embryonic stem cells and achieved dropout efficiencies that could not be explained by common frameshift frequencies. We find that these superior effect sizes are mainly determined by the impact of in-frame mutations on protein function, which can be predicted based on amino acid composition and conservation. We integrate protein features into a 'Bioscore' and fuse it with improved predictors of single-guide RNA activity and indel formation to establish a score that captures all relevant processes in CRISPR-Cas9 mutagenesis. This Vienna Bioactivity CRISPR score (www.vbc-score.org) outperforms previous prediction tools and enables the selection of sgRNAs that effectively produce loss-of-function alleles.


Assuntos
Alelos , Sistemas CRISPR-Cas/genética , RNA Guia de Cinetoplastídeos/genética , Animais , Benchmarking , Proteína 9 Associada à CRISPR/genética , Conjuntos de Dados como Assunto , Humanos , Camundongos , Mutação
7.
Nat Commun ; 10(1): 5454, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784531

RESUMO

CRISPR-Cas9 is an efficient and versatile tool for genome engineering in many species. However, inducible CRISPR-Cas9 editing systems that regulate Cas9 activity or sgRNA expression often suffer from significant limitations, including reduced editing capacity, off-target effects, or leaky expression. Here, we develop a precisely controlled sgRNA expression cassette that can be combined with widely-used Cre systems, termed CRISPR-Switch (SgRNA With Induction/Termination by Cre Homologous recombination). Switch-ON facilitates controlled, rapid induction of sgRNA activity. In turn, Switch-OFF-mediated termination of editing improves generation of heterozygous genotypes and can limit off-target effects. Furthermore, we design sequential CRISPR-Switch-based editing of two loci in a strictly programmable manner and determined the order of mutagenic events that leads to development of glioblastoma in mice. Thus, CRISPR-Switch substantially increases the versatility of gene editing through precise and rapid switching ON or OFF sgRNA activity, as well as switching OVER to secondary sgRNAs.


Assuntos
Edição de Genes/métodos , Células-Tronco Embrionárias Murinas/metabolismo , RNA Guia de Cinetoplastídeos/genética , Animais , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Engenharia Genética , Recombinação Homóloga , Integrases , Camundongos , Mutagênese , RNA Polimerase III
8.
Oncotarget ; 9(11): 9838-9851, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29515774

RESUMO

Forward genetic screens in haploid mammalian cells have recently emerged as powerful tools for the discovery and investigation of recessive traits. Use of the haploid system provides unique genetic tractability and resolution. Upon positive selection, these screens typically employ analysis of loss-of-function (LOF) alleles and are thus limited to non-essential genes. Many relevant compounds, including anti-cancer therapeutics, however, target essential genes, precluding positive selection of LOF alleles. Here, we asked whether the use of random and saturating chemical mutagenesis might enable screens that identify essential biological targets of toxic compounds. We compare and contrast chemical mutagenesis with insertional mutagenesis. Selecting mutagenized cells with thapsigargin, an inhibitor of the essential Ca2+ pump SERCA2, insertional mutagenesis retrieved cell clones overexpressing SERCA2. With chemical mutagenesis, we identify six single amino acid substitutions in the known SERCA2-thapsigargin binding interface that confer drug resistance. In a second screen, we used the anti-cancer drug MG132/bortezomib (Velcade), which inhibits proteasome activity. Using chemical mutagenesis, we found 7 point mutations in the essential subunit Psmb5 that map to the bortezomib binding surface. Importantly, 4 of these had previously been identified in human tumors with acquired bortezomib resistance. Insertional mutagenesis did not identify Psmb5 in this screen, demonstrating the unique ability of chemical mutagenesis to identify relevant point mutations in essential genes. Thus, chemical mutagenesis in haploid embryonic stem cells can define the interaction of toxic small molecules with essential proteins at amino acid resolution, fully mapping small molecule-protein binding interfaces.

9.
Nat Methods ; 14(12): 1191-1197, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29039415

RESUMO

Pooled CRISPR screens are a powerful tool for assessments of gene function. However, conventional analysis is based exclusively on the relative abundance of integrated single guide RNAs (sgRNAs) between populations, which does not discern distinct phenotypes and editing outcomes generated by identical sgRNAs. Here we present CRISPR-UMI, a single-cell lineage-tracing methodology for pooled screening to account for cell heterogeneity. We generated complex sgRNA libraries with unique molecular identifiers (UMIs) that allowed for screening of clonally expanded, individually tagged cells. A proof-of-principle CRISPR-UMI negative-selection screen provided increased sensitivity and robustness compared with conventional analysis by accounting for underlying cellular and editing-outcome heterogeneity and detection of outlier clones. Furthermore, a CRISPR-UMI positive-selection screen uncovered new roadblocks in reprogramming mouse embryonic fibroblasts as pluripotent stem cells, distinguishing reprogramming frequency and speed (i.e., effect size and probability). CRISPR-UMI boosts the predictive power, sensitivity, and information content of pooled CRISPR screens.


Assuntos
Sistemas CRISPR-Cas/genética , Linhagem da Célula/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes , RNA Guia de Cinetoplastídeos , Análise de Célula Única/métodos , Animais , Células Cultivadas , Fibroblastos/citologia , Técnicas de Inativação de Genes , Vetores Genéticos , Camundongos , Células-Tronco Pluripotentes/citologia , Retroviridae/genética , Razão Sinal-Ruído
10.
Development ; 143(7): 1126-33, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26903504

RESUMO

Microtubules play a crucial role in the generation, migration and differentiation of nascent neurons in the developing vertebrate brain. Mutations in the constituents of microtubules, the tubulins, are known to cause an array of neurological disorders, including lissencephaly, polymicrogyria and microcephaly. In this study we explore the genetic and cellular mechanisms that cause TUBB5-associated microcephaly by exploiting two new mouse models: a conditional E401K knock-in, and a conditional knockout animal. These mice present with profound microcephaly due to a loss of upper-layer neurons that correlates with massive apoptosis and upregulation of p53. This phenotype is associated with a delay in cell cycle progression and ectopic DNA elements in progenitors, which is dependent on the dosage of functional Tubb5. Strikingly, we report ectopic Sox2-positive progenitors and defects in spindle orientation in our knock-in mouse line, which are absent in knockout animals. This work sheds light on the functional repertoire of Tubb5, reveals that the E401K mutation acts by a complex mechanism, and demonstrates that the cellular pathology driving TUBB5-associated microcephaly is cell death.


Assuntos
Apoptose/genética , Ciclo Celular/genética , Microcefalia/genética , Microtúbulos/genética , Tubulina (Proteína)/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Encéfalo/anormalidades , Encéfalo/embriologia , Diferenciação Celular , Modelos Animais de Doenças , Embrião de Mamíferos/embriologia , Técnicas de Introdução de Genes , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microtúbulos/metabolismo , Células-Tronco Neurais/citologia , Fatores de Transcrição SOXB1/metabolismo , Fuso Acromático/genética , Células-Tronco/citologia , Proteína Supressora de Tumor p53/biossíntese
11.
Nat Genet ; 46(9): 1028-33, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25129145

RESUMO

Neutrophils are key innate immune effector cells that are essential to fighting bacterial and fungal pathogens. Here we report that mice carrying a hematopoietic lineage-specific deletion of Jagn1 (encoding Jagunal homolog 1) cannot mount an efficient neutrophil-dependent immune response to the human fungal pathogen Candida albicans. Global glycobiome analysis identified marked alterations in the glycosylation of proteins involved in cell adhesion and cytotoxicity in Jagn1-deficient neutrophils. Functional analysis confirmed marked defects in neutrophil migration in response to Candida albicans infection and impaired formation of cytotoxic granules, as well as defective myeloperoxidase release and killing of Candida albicans. Treatment with granulocyte/macrophage colony-stimulating factor (GM-CSF) protected mutant mice from increased weight loss and accelerated mortality after Candida albicans challenge. Notably, GM-CSF also restored the defective fungicidal activity of bone marrow cells from humans with JAGN1 mutations. These data directly identify Jagn1 (JAGN1 in humans) as a new regulator of neutrophil function in microbial pathogenesis and uncover a potential treatment option for humans.


Assuntos
Candidíase/imunologia , Proteínas de Membrana/imunologia , Neutrófilos/imunologia , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/microbiologia , Candida albicans , Candidíase/tratamento farmacológico , Candidíase/metabolismo , Candidíase/microbiologia , Glicosilação , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Neutrófilos/microbiologia
12.
Nat Genet ; 46(9): 1021-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25129144

RESUMO

The analysis of individuals with severe congenital neutropenia (SCN) may shed light on the delicate balance of factors controlling the differentiation, maintenance and decay of neutrophils. We identify 9 distinct homozygous mutations in the JAGN1 gene encoding Jagunal homolog 1 in 14 individuals with SCN. JAGN1-mutant granulocytes are characterized by ultrastructural defects, a paucity of granules, aberrant N-glycosylation of multiple proteins and increased incidence of apoptosis. JAGN1 participates in the secretory pathway and is required for granulocyte colony-stimulating factor receptor-mediated signaling. JAGN1 emerges as a factor that is necessary in the differentiation and survival of neutrophils.


Assuntos
Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Células Mieloides/metabolismo , Neutropenia/congênito , Adolescente , Adulto , Apoptose/genética , Diferenciação Celular/genética , Sobrevivência Celular/genética , Criança , Pré-Escolar , Síndrome Congênita de Insuficiência da Medula Óssea , Feminino , Glicosilação , Homeostase/genética , Humanos , Lactente , Recém-Nascido , Masculino , Proteínas de Membrana/metabolismo , Mutação , Neutropenia/genética , Neutropenia/metabolismo , Neutropenia/patologia , Neutrófilos/metabolismo , Receptores de Fator Estimulador de Colônias de Granulócitos/genética , Receptores de Fator Estimulador de Colônias de Granulócitos/metabolismo , Transdução de Sinais , Adulto Jovem
13.
Nat Genet ; 43(3): 212-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21317887

RESUMO

Most preneoplastic lesions are quiescent and do not progress to form overt tumors. It has been proposed that oncogenic stress activates the DNA damage response and the key tumor suppressor p53, which prohibits tumor growth. However, the molecular pathways by which cells sense a premalignant state in vivo are largely unknown. Here we report that tissue-specific inactivation of the stress signaling kinase MKK7 in KRas(G12D)-driven lung carcinomas and NeuT-driven mammary tumors markedly accelerates tumor onset and reduces overall survival. Mechanistically, MKK7 acts through the kinases JNK1 and JNK2, and this signaling pathway directly couples oncogenic and genotoxic stress to the stability of p53, which is required for cell cycle arrest and suppression of epithelial cancers. These results show that MKK7 functions as a major tumor suppressor in lung and mammary cancer in mouse and identify MKK7 as a vital molecular sensor to set a cellular anti-cancer barrier.


Assuntos
Dano ao DNA , Genes p53 , MAP Quinase Quinase 7/genética , Animais , Ciclo Celular/genética , Senescência Celular , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Genes ras , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Sistema de Sinalização das MAP Quinases , Neoplasias Mamárias Experimentais/genética , Camundongos , Estabilidade Proteica
14.
Development ; 129(22): 5255-68, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12399316

RESUMO

Co-factor homeodomain proteins such as Drosophila Homothorax (Hth) and Extradenticle (Exd) and their respective vertebrate homologs, the Meis/Prep and Pbx proteins, can increase the DNA-binding specificity of Hox protein transcription factors and appear to be required for many of their developmental functions. We show that the unc-62 gene encodes the C. elegans ortholog of Hth, and that maternal-effect unc-62 mutations can cause severe posterior disorganization during embryogenesis (Nob phenotype), superficially similar to that seen in embryos lacking function of either the two posterior-group Hox genes nob-1 and php-3 or the caudal homolog pal-1. Other zygotically acting unc-62 alleles cause earlier embryonic arrest or incompletely penetrant larval lethality with variable morphogenetic defects among the survivors, suggesting that unc-62 functions are required at several stages of development. The differential accumulation of four unc-62 transcripts is consistent with multiple functions. The C. elegans exd homologs ceh-20 and ceh-40 interact genetically with unc-62 and may have overlapping roles in embryogenesis: neither CEH-20 nor CEH-40 appears to be required when the other is present, but loss of both functions causes incompletely penetrant embryonic lethality in the presence of unc-62(+) and complete embryonic lethality in the presence of an unc-62 hypomorphic allele.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Proteínas de Helminto/metabolismo , Proteínas de Homeodomínio/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Drosophila/genética , Embrião não Mamífero , Morte Fetal/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Helminto/genética , Proteínas de Homeodomínio/genética , Dados de Sequência Molecular , Família Multigênica , Mutação , Proteína Meis1 , Proteínas de Neoplasias/genética , Fenótipo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA