Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Discov ; 4: 26, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29872538

RESUMO

PEAK1 is a newly described tyrosine kinase and scaffold protein that transmits integrin-mediated extracellular matrix (ECM) signals to facilitate cell movement and growth. While aberrant expression of PEAK1 has been linked to cancer progression, its normal physiological role in vertebrate biology is not known. Here we provide evidence that PEAK1 plays a central role in orchestrating new vessel formation in vertebrates. Deletion of the PEAK1 gene in zebrafish, mice, and human endothelial cells (ECs) induced severe defects in new blood vessel formation due to deficiencies in EC proliferation, survival, and migration. Gene transcriptional and proteomic analyses of PEAK1-deficient ECs revealed a significant loss of vascular endothelial growth factor receptor 2 (VEGFR2) mRNA and protein expression, as well as downstream signaling to its effectors, ERK, Akt, and Src kinase. PEAK1 regulates VEGFR2 expression by binding to and increasing the protein stability of the transcription factor GATA-binding protein 2 (GATA2), which controls VEGFR2 transcription. Importantly, PEAK1-GATA2-dependent VEGFR2 expression is mediated by EC adhesion to the ECM and is required for breast cancer-induced new vessel formation in mice. Also, elevated expression of PEAK1 and VEGFR2 mRNA are highly correlated in many human cancers including breast cancer. Together, our findings reveal a novel PEAK1-GATA2-VEGFR2 signaling axis that integrates cell adhesion and growth factor cues from the extracellular environment necessary for new vessel formation during vertebrate development and cancer.

2.
Cancer Discov ; 7(12): 1464-1479, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28893801

RESUMO

Identifying the molecular basis for cancer cell dependence on oncogenes such as KRAS can provide new opportunities to target these addictions. Here, we identify a novel role for the carbohydrate-binding protein galectin-3 as a lynchpin for KRAS dependence. By directly binding to the cell surface receptor integrin αvß3, galectin-3 gives rise to KRAS addiction by enabling multiple functions of KRAS in anchorage-independent cells, including formation of macropinosomes that facilitate nutrient uptake and ability to maintain redox balance. Disrupting αvß3/galectin-3 binding with a clinically active drug prevents their association with mutant KRAS, thereby suppressing macropinocytosis while increasing reactive oxygen species to eradicate αvß3-expressing KRAS-mutant lung and pancreatic cancer patient-derived xenografts and spontaneous tumors in mice. Our work reveals galectin-3 as a druggable target for KRAS-addicted lung and pancreas cancers, and indicates integrin αvß3 as a biomarker to identify susceptible tumors.Significance: There is a significant unmet need for therapies targeting KRAS-mutant cancers. Here, we identify integrin αvß3 as a biomarker to identify mutant KRAS-addicted tumors that are highly sensitive to inhibition of galectin-3, a glycoprotein that binds to integrin αvß3 to promote KRAS-mediated activation of AKT. Cancer Discov; 7(12); 1464-79. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 1355.


Assuntos
Galectina 3/genética , Neoplasias Pulmonares/genética , Proteínas ras/genética , Animais , Galectina 3/metabolismo , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Transdução de Sinais
3.
Cancer Res ; 75(21): 4466-73, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26297735

RESUMO

Integrin αvß3 has been implicated as a driver of aggressive and metastatic disease, and is upregulated during glioblastoma progression. Here, we demonstrate that integrin αvß3 allows glioblastoma cells to counteract senescence through a novel tissue-specific effector mechanism involving recruitment and activation of the cytoskeletal regulatory kinase PAK4. Mechanistically, targeting either αvß3 or PAK4 led to emergence of a p21-dependent, p53-independent cell senescence phenotype. Notably, glioblastoma cells did not exhibit a similar requirement for either other integrins or additional PAK family members. Moreover, αvß3/PAK4 dependence was not found to be critical in epithelial cancers. Taken together, our findings established that glioblastomas are selectively addicted to this pathway as a strategy to evade oncogene-induced senescence, with implications that inhibiting the αvß3-PAK4 signaling axis may offer novel therapeutic opportunities to target this aggressive cancer.


Assuntos
Neoplasias Encefálicas/genética , Senescência Celular/genética , Glioblastoma/genética , Integrina alfaVbeta3/genética , Quinases Ativadas por p21/genética , Animais , Neoplasias Encefálicas/patologia , Proliferação de Células/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Feminino , Glioblastoma/patologia , Humanos , Integrina alfaVbeta3/metabolismo , Camundongos , Camundongos Nus , Transplante de Neoplasias , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais/genética , Esferoides Celulares , Transplante Heterólogo , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Vitronectina/metabolismo , Quinases Ativadas por p21/metabolismo
4.
Nat Cell Biol ; 16(5): 457-68, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24747441

RESUMO

Tumour cells, with stem-like properties, are highly aggressive and often show drug resistance. Here, we reveal that integrin α(v)ß3 serves as a marker of breast, lung and pancreatic carcinomas with stem-like properties that are highly resistant to receptor tyrosine kinase inhibitors such as erlotinib. This was observed in vitro and in mice bearing patient-derived tumour xenografts or in clinical specimens from lung cancer patients who had progressed on erlotinib. Mechanistically, α(v)ß3, in the unliganded state, recruits KRAS and RalB to the tumour cell plasma membrane, leading to the activation of TBK1 and NF-κB. In fact, α(v)ß3 expression and the resulting KRAS-RalB-NF-κB pathway were both necessary and sufficient for tumour initiation, anchorage independence, self-renewal and erlotinib resistance. Pharmacological targeting of this pathway with bortezomib reversed both tumour stemness and erlotinib resistance. These findings not only identify α(v)ß3 as a marker/driver of carcinoma stemness but also reveal a therapeutic strategy to sensitize such tumours to RTK inhibition.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Integrina beta3/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas/metabolismo , Proteínas ral de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios Clínicos Fase II como Assunto , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Cloridrato de Erlotinib , Feminino , Humanos , Integrina alfaVbeta3/metabolismo , Integrina beta3/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Terapia de Alvo Molecular , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fenótipo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-rel/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-rel/metabolismo , Proteínas Proto-Oncogênicas p21(ras) , Quinazolinas/uso terapêutico , Interferência de RNA , Ensaios Clínicos Controlados Aleatórios como Assunto , Transdução de Sinais/efeitos dos fármacos , Esferoides Celulares , Fatores de Tempo , Transfecção , Carga Tumoral/efeitos dos fármacos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas ral de Ligação ao GTP/genética , Proteínas ras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA