Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 12(6): 5228-5240, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29767993

RESUMO

Mycobacterium tuberculosis ( M.tb) has the extraordinary ability to adapt to the administration of antibiotics through the development of resistance mechanisms. By rapidly exporting drugs from within the cytosol, these pathogenic bacteria diminish antibiotic potency and drive the presentation of drug-tolerant tuberculosis (TB). The membrane integrity of M.tb is pivotal in retaining these drug-resistant traits. Silver (Ag) and zinc oxide (ZnO) nanoparticles (NPs) are established antimicrobial agents that effectively compromise membrane stability, giving rise to increased bacterial permeability to antibiotics. In this work, biodegradable multimetallic microparticles (MMPs), containing Ag NPs and ZnO NPs, were developed for use in pulmonary delivery of antituberculous drugs to the endosomal system of M.tb-infected macrophages. Efficient uptake of MMPs by M.tb-infected THP1 cells was demonstrated using an in vitro macrophage infection model, with direct interaction between MMPs and M.tb visualized with the use of electron FIB-SEM tomography. The release of Ag NPs and ZnO NPs within the macrophage endosomal system increased the potency of the model antibiotic rifampicin by as much as 76%, realized through an increase in membrane disorder of intracellular M.tb. MMPs were effective at independently driving membrane destruction of extracellular bacilli located at the exterior face of THP1 macrophages. This MMP system presents as an effective drug delivery vehicle that could be used for the transport of antituberculous drugs such as rifampicin to infected alveolar macrophages, while increasing drug potency. By increasing M.tb membrane permeability, such a system may prove effectual in improving treatment of drug-susceptible TB in addition to M.tb strains considered drug-resistant.


Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Nanopartículas/química , Rifampina/farmacologia , Prata/química , Óxido de Zinco/química , Antituberculosos/química , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Macrófagos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/citologia , Rifampina/química , Relação Estrutura-Atividade , Óxido de Zinco/síntese química
2.
Am J Pathol ; 163(1): 183-96, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12819023

RESUMO

Previous studies have suggested that surface components of papillary thyroid carcinoma (PTC) cells may be aberrantly glycanated, but the precise nature of these molecules has not been unveiled nor documented to be of clinical relevance. A monoclonal antibody was raised against a unique keratan sulfate (KS) determinant and used to differentially screen benign and malignant thyroid tissue for the expression of components carrying these moieties. In a total of 349 cases of benign and malignant thyroid lesions, 100% of the 115 PTC cases examined (including various histological subtypes) were found to contain KS-bearing molecules, whereas these were virtually absent from benign tissues and other thyroid tumors, with the exception of 21% of the follicular carcinoma cases analyzed. A composite immunoaffinity chromatography, immunochemistry, and mass spectrometric approach revealed that the PTC-specific KS-bearing macromolecules were unique glycoforms of thyroglobulin and transferrin. Combined, reciprocal immunoprecipitation and Western blotting further indicated that the former glycoform predominated and that most of the transferrin produced by PTC was glycanated with KS moieties. Fluorescent keratanase II-based fingerprinting of the KS moieties bound to these isoforms further demonstrated several PTC-specific peculiarities: 1) that a considerable portion of the moieties was covalently attached via a novel core protein linkage structure; 2) they had an unusual extended average length; 3) an unusual relative ratio of highly sulfated disaccharides terminating with alpha (2-3)-linked N-acetylneuraminic acid capping residues; and 4) a novel unidentified oligosaccharide moiety at the nonreducing terminus. Comparative analysis of the relative distribution of transferrin in benign versus PTC tissues highlighted a marked malignancy-associated abundance of the molecule, with a >75% frequency in expression in PTC. These findings demonstrate that PTC cells synthesize unique post-translationally modified thyroglobulin and transferrin variants in situ that may be directly exploitable for diagnosis, through histological and noninvasive cytological procedures; for devising novel strategies for antibody-guided imaging of this tumor in vivo; and for postsurgery follow-up of PTC patients.


Assuntos
Carcinoma Papilar/metabolismo , Sulfato de Queratano/metabolismo , Proteoma , Tireoglobulina/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Transferrina/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Carcinoma Papilar/patologia , Epitopos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Tireoglobulina/química , Glândula Tireoide/citologia , Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Transferrina/química
3.
J Biol Chem ; 278(22): 19751-6, 2003 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-12646576

RESUMO

Expression of the mitochondrial proton-translocating ATPase of Saccharomyces cerevisiae has been shown to depend on chaperones that target the F1 and F0 sectors of this inner membrane complex. Here we report a new gene, designated ATP22 (reading frame YDR350C on chromosome IV), that provides an essential function in the assembly of F0. ATP22 was cloned by transformation of C208/L2, a strain previously assigned to complementation group G99 of a collection of respiration-defective nuclear pet mutants. C208/L2 and the other atp22 mutants have oligomycin-insensitive F1-ATPase, suggesting that the lesion is confined to F0. This is supported by the sedimentation properties of the mutant ATPase and results of immunochemical analysis of F0 subunit polypeptides. Northern analysis of ATPase transcripts and in vivo pulse labeling of the mitochondrial translation products in the mutant indicate normal expression of subunits 6, 8, and 9, the three mitochondrial gene products of F0. Atp22p therefore functions at a post-translational stage in assembly of F0. Localization studies indicate Atp22p to be a component of the mitochondrial inner membrane. Protease protection experiments further indicate that Atp22p faces the matrix side of the membrane where most of the ATPase proteins are located and assembled.


Assuntos
Adenosina Trifosfatases/metabolismo , Núcleo Celular/genética , Genes Fúngicos , Mitocôndrias/enzimologia , Saccharomyces cerevisiae/enzimologia , Sequência de Bases , Primers do DNA , Mutação , Reação em Cadeia da Polimerase , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA