Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(2): 118, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296851

RESUMO

Highly specific detection of tumor-associated biomarkers remains a challenge in the diagnosis of prostate cancer. In this research, Maackia amurensis (MAA) was used as a recognition element in the functionalization of an electrochemical impedance-spectroscopy biosensor without a label to identify cancer-associated aberrant glycosylation prostate-specific antigen (PSA). The lectin was immobilized on gold-interdigitated microelectrodes. Furthermore, the biosensor's impedance response was used to assess the establishment of a complex binding between MAA and PSA-containing glycans. With a small sample volume, the functionalized interdigitated impedimetric-based (IIB) biosensor exhibited high sensitivity, rapid response, and repeatability. PSA glycoprotein detection was performed by measuring electron transfer resistance values within a concentration range 0.01-100 ng/mL, with a detection limit of 3.574 pg/mL. In this study, the ability of MAA to preferentially recognize α2,3-linked sialic acid in serum PSA was proven, suggesting a potential platform for the development of lectin-based, miniaturized, and cost effective IIB biosensors for future disease detection.


Assuntos
Técnicas Biossensoriais , Neoplasias da Próstata , Masculino , Humanos , Lectinas/química , Biomarcadores Tumorais , Antígeno Prostático Específico , Maackia/metabolismo , Próstata/metabolismo , Neoplasias da Próstata/diagnóstico , Técnicas Biossensoriais/métodos
2.
Biosens Bioelectron ; 180: 113137, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33690099

RESUMO

A biosensor based on the release of the enzyme substrate from its structure was developed for the inhibitive detection of benzoic acid. A polyurethane support comprising two perforated microcapsules (800 µm in diameter) filled with methylene blue as a model compound and covered with a conductive deposit of multiwalled carbon nanotubes, continuously released this stored dye for 24 h. An increase in methylene blue concentration of 0.5-0.75 µmol L-1 h-1 and 1.5-2 µmol L-1 h-1, in the presence and absence of the multiwalled carbon nanotube coating, respectively, was demonstrated by UV-vis spectroscopy in a 2 mL UV cuvette. The same configuration with microcapsules filled with catechol was modified by a laponite clay coating containing tyrosinase enzyme. The resulting biosensor exhibits a constant cathodic current at -0.155 V vs AgCl/Ag, due to the reduction of the ortho-quinone produced enzymatically from the released catechol. The detection of benzoic acid was recorded from the decrease in cathodic current due to its inhibiting action on the tyrosinase activity. Reagentless biosensors based on different deposited quantity of tyrosinase (100, 200, 400 and 600 µg) were investigated for the detection of catechol and applied to the detection of benzoic acid as inhibitor. The best performance was obtained with the 400 µg-based configuration, namely a detection limit of 0.4 µmol L-1 and a sensitivity of 228 mA L mol-1. After the inhibition process, the biosensors recover 97-100% of their activity towards catechol, confirming a reversible inhibition by benzoic acid.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , Ácido Benzoico , Cápsulas , Catecóis , Eletroquímica , Enzimas Imobilizadas , Indicadores e Reagentes , Monofenol Mono-Oxigenase
3.
Artigo em Inglês | MEDLINE | ID: mdl-12839183

RESUMO

High performances surface acoustic wave (SAW) filters based on aluminium nitride (AlN)/diamond layered structure have been fabricated. The C-axis oriented aluminum nitride films with various thicknesses were sputtered on unpolished nucleation side of free-standing polycrystalline chemical vapor deposition (CVD) diamond obtained by silicon substrate etching. Experimental results show that high order modes as well as Rayleigh waves are excited. Experimental results are in good agreement with the theoretical dispersion curves determined by software simulation with Green's function formalism. We demonstrate that high phase velocity first mode wave (so-called Sezawa wave) with high electromechanical coupling coefficient are obtained on AlN/diamond structure. This structure also has a low temperature coefficient of frequency (TCF), and preliminary results suggest that a zero TCF could be expected.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA