Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Mol Genet Metab ; 142(1): 108454, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38603816

RESUMO

BACKGROUND: Cystine-depleting therapy in nephropathic cystinosis is currently monitored via the white blood cell cystine assay, although its application and usefulness are limited by practical and technical issues. Therefore, alternative biomarkers that are widely available, more economical and less technically demanding, while reliably reflecting long-term adherence to cysteamine treatment, are desirable. Recently, we proposed chitotriosidase enzyme activity as a potential novel biomarker for the therapeutic monitoring of cysteamine treatment in cystinosis. In this study, we aimed to validate our previous findings and to confirm the value of chitotriosidase in the management of cystinosis therapy. MATERIALS & METHODS: A retrospective study was conducted on 12 patients treated at the National Institutes of Health Clinical Center and followed up for at least 2 years. Plasma chitotriosidase enzyme activity was correlated with corresponding clinical and biochemical data. RESULTS: Plasma chitotriosidase enzyme activity significantly correlated with WBC cystine levels, cysteamine total daily dosage and a Composite compliance score. Moreover, plasma chitotriosidase was a significant independent predictor for WBC cystine levels, and cut-off values were established in both non-kidney transplanted and kidney transplanted cystinosis patients to distinguish patients with a good versus poor compliance with cysteamine treatment. Our observations are consistent with those of our previous study and validate our findings. CONCLUSIONS: Chitotriosidase enzyme activity is a valid potential alternative biomarker for monitoring cysteamine treatment in nephropathic cystinosis patients. SYNOPSIS: Chitotriosidase enzyme activity is a valid potential alternative biomarker for monitoring cysteamine treatment in nephropathic cystinosis patients.


Assuntos
Cisteamina , Cistina , Cistinose , Hexosaminidases , Humanos , Cisteamina/uso terapêutico , Masculino , Feminino , Cistinose/tratamento farmacológico , Cistinose/sangue , Estudos Retrospectivos , Hexosaminidases/sangue , Adolescente , Cistina/sangue , Criança , Adulto , Biomarcadores/sangue , Adulto Jovem , Monitoramento de Medicamentos/métodos , Eliminadores de Cistina/uso terapêutico , Pré-Escolar , Transplante de Rim
2.
Ann Hum Genet ; 87(4): 166-173, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36916508

RESUMO

INTRODUCTION: Congenital sideroblastic anemias (CSAs) are a group of inherited bone-marrow disorders manifesting with erythroid hyperplasia and ineffective erythropoiesis. METHODS: We describe a detailed clinical and genetic characterization of three siblings with CSA. RESULTS: Two of them had limb-girdle myopathy and global developmental delay. The two elder siblings performed allogenic hematopoietic stem-cell transplantation 5 and 3 years prior with stabilization of the hematological features. Exome sequencing in the non-transplanted sibling revealed a novel homozygous nonsense variant in SLC25A38 gene NM_017875.2:c.559C > T; p.(Arg187*) causing autosomal-recessive sideroblastic anemia type-2, and a second homozygous pathogenic previously reported variant in GMPPB gene NM_013334.3:c.458C > T; p.(Thr153Ile) causing autosomal-recessive muscular dystrophy-dystroglycanopathy type B14. With the established diagnosis, hematopoietic stem cell transplantation is now being scheduled for the youngest sibling, and a trial therapy with acetylcholine esterase inhibitors was started for the two neurologically affected patients with partial clinical improvement. CONCLUSION: This family emphasizes the importance of whole-exome sequencing for familial cases with complex phenotypes and vague neurological manifestations.


Assuntos
Anemia Sideroblástica , Humanos , Anemia Sideroblástica/genética , Anemia Sideroblástica/diagnóstico , Anemia Sideroblástica/patologia , Irmãos , Genótipo , Fenótipo , Mutação
3.
Cells ; 11(2)2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-35053306

RESUMO

The activation of several inflammatory pathways has recently been documented in patients and different cellular and animal models of nephropathic cystinosis. Upregulated inflammatory signals interact with many pathogenic aspects of the disease, such as enhanced oxidative stress, abnormal autophagy, inflammatory cell recruitment, enhanced cell death, and tissue fibrosis. Cysteamine, the only approved specific therapy for cystinosis, ameliorates many but not all pathogenic aspects of the disease. In the current review, we summarize the inflammatory mechanisms involved in cystinosis and their potential impact on the disease pathogenesis and progression. We further elaborate on the crosstalk between inflammation, autophagy, and apoptosis, and discuss the potential of experimental drugs for suppressing the inflammatory signals in cystinosis.


Assuntos
Cistinose/patologia , Cistinose/terapia , Inflamação/patologia , Inflamação/terapia , Nefropatias/patologia , Nefropatias/terapia , Animais , Autofagia , Humanos , Inflamassomos/metabolismo , Terapia de Alvo Molecular
4.
Pediatr Nephrol ; 37(7): 1555-1566, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34791528

RESUMO

BACKGROUND: Nephropathic cystinosis is a rare autosomal recessive lysosomal storage disorder characterized by kidney and extra-renal complications due to the accumulation of cystine crystals in various tissues and organs. Herein, we describe the early neuromuscular complications in a cohort of pediatric nephropathic cystinosis patients. METHODS: We prospectively evaluated the clinical, biochemical, and neurophysiological data of 15 cystinosis patients. Neurophysiological evaluation was performed to confirm or exclude presence of neuropathy and/or myopathy. RESULTS: Patients' age ranged between 20 and 216 months at time of examination. Nine patients were males. Three patients had early abnormal neurophysiological features consistent with neuromuscular involvement (clinically asymptomatic proximal myopathy with a patchy distribution in one patient and isolated asymptomatic sensory nerve conduction changes in two patients). A fourth patient had mixed abnormal motor and sensory axonal neuropathic changes associated with overt clinical features (predominantly motor symptoms). Patients with abnormal neuromuscular features were significantly older in age than the unaffected group (P = 0.005) and had a diagnosis of cystinosis with subsequent cysteamine therapy at a significantly older age than the unaffected group (P = 0.027 and 0.001, respectively). CONCLUSIONS: We expanded the recognized phenotypes of cystinosis neuromuscular complications with early proximal skeletal myopathy and symptomatic motor and sensory axonal neuropathy. Early asymptomatic neuromuscular complications could develop in pediatric patients and would require neurophysiological studies for early detection prior to development of overt clinical manifestations. Prompt diagnosis and timely initiation of cysteamine therapy with recommended dose can delay the development of neuromuscular complications. A higher resolution version of the Graphical abstract is available as Supplementary information.


Assuntos
Cistinose , Síndrome de Fanconi , Doenças Musculares , Adolescente , Criança , Estudos de Coortes , Cisteamina/uso terapêutico , Cistinose/complicações , Cistinose/diagnóstico , Cistinose/tratamento farmacológico , Feminino , Humanos , Masculino , Doenças Musculares/induzido quimicamente , Doenças Musculares/complicações
5.
Cells ; 10(12)2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34943802

RESUMO

Nephropathic cystinosis is a rare disease caused by mutations of the CTNS gene that encodes for cystinosin, a lysosomal cystine/H+ symporter. The disease is characterized by early-onset chronic kidney failure and progressive development of extra-renal complications related to cystine accumulation in all tissues. At the cellular level, several alterations have been demonstrated, including enhanced apoptosis, altered autophagy, defective intracellular trafficking, and cell oxidation, among others. Current therapy with cysteamine only partially reverts some of these changes, highlighting the need to develop additional treatments. Among compounds that were identified in a previous drug-repositioning study, disulfiram (DSF) was selected for in vivo studies. The cystine depleting and anti-apoptotic properties of DSF were confirmed by secondary in vitro assays and after treating Ctns-/- mice with 200 mg/kg/day of DSF for 3 months. However, at this dosage, growth impairment was observed. Long-term treatment with a lower dose (100 mg/kg/day) did not inhibit growth, but failed to reduce cystine accumulation, caused premature death, and did not prevent the development of renal lesions. In addition, DSF also caused adverse effects in cystinotic zebrafish larvae. DSF toxicity was significantly more pronounced in Ctns-/- mice and zebrafish compared to wild-type animals, suggesting higher cell toxicity of DSF in cystinotic cells.


Assuntos
Cistinose/patologia , Dissulfiram/toxicidade , Nefropatias/patologia , Testes de Toxicidade , Acetilcisteína/farmacologia , Animais , Apoptose , Cistina/metabolismo , Cistinose/urina , Modelos Animais de Doenças , Dissulfetos/metabolismo , Dissulfiram/química , Embrião não Mamífero/metabolismo , Humanos , Nefropatias/urina , Larva/metabolismo , Camundongos Knockout , Peixe-Zebra/embriologia
6.
Lipids Health Dis ; 20(1): 38, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879184

RESUMO

BACKGROUND: Neonatal severe hypertriglyceridemia is rarely reported in the literature and there is no consensus for hypertriglyceridemia management at this age group. METHODS: The index case is a 4-week-old male infant with severe hypertriglyceridemia accidentally discovered during a circumcision surgery. His clinical and genetic characteristics and his successful management strategy are described. Furthermore, a detailed ophthalmological examination of the proband was conducted at 3 and 6 months of age using Fourier-domain-optical coherence tomography. RESULTS: Triglycerides level at presentation was extremely high 33,727 mg/dL (380.8 mmol/L). Two sessions of exchange blood transfusion on two consecutive days successfully reduced triglycerides to 382 mg/dL (4.3 mmol/L) with no adverse effects. The infant was discharged 3 days later. At discharge, the mother was advised to continue breastfeeding together with a medium-chain triglycerides formula. Satisfactory growth parameters and lipid profile values were obtained for a follow-up duration of 5 months with no reported attacks of acute pancreatitis. Lipoprotein lipase deficiency was confirmed by the detection of the LPL homozygous pathogenic variant c.805G > A; p.(Glu269Lys). Early corneal and macular lesions were detected and persisted on follow-up despite relatively good lipemic control. CONCLUSION: This case highlights the importance of the early discovery of severe hypertriglyceridemia during the neonatal period, which is needed for prompt management and prevention of severe complications. Rationalized breastfeeding can be tolerated within the diet plan of the disease with satisfactory outcomes. To our knowledge, it is the first study reporting early corneal and macular affection by severe hypertriglyceridemia in a neonate. Prolonged follow-up is needed to determine the extent of ophthalmological lesions.


Assuntos
Hiperlipoproteinemia Tipo IV/terapia , Doenças do Recém-Nascido/terapia , Retina/patologia , Transfusão Total , Humanos , Hiperlipoproteinemia Tipo IV/patologia , Recém-Nascido , Doenças do Recém-Nascido/patologia , Masculino , Tomografia de Coerência Óptica , Triglicerídeos/sangue
8.
Mol Genet Metab ; 131(3): 285-288, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33004274

RESUMO

Quantitative estimates for the global impact of COVID-19 on the diagnosis and management of patients with inborn errors of metabolism (IEM) are lacking. We collected relevant data from 16 specialized medical centers treating IEM patients in Europe, Asia and Africa. The median decline of reported IEM related services in March 1st-May 31st 2020 compared to the same period in 2019 were as high as 60-80% with a profound impact on patient management and care for this vulnerable patient group. More representative data along with outcome data and guidelines for managing IEM disorders under such extraordinary circumstances are needed.


Assuntos
COVID-19/prevenção & controle , Atenção à Saúde/estatística & dados numéricos , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/terapia , África/epidemiologia , Ásia/epidemiologia , COVID-19/epidemiologia , COVID-19/virologia , Comorbidade , Atenção à Saúde/métodos , Atenção à Saúde/tendências , Europa (Continente)/epidemiologia , Humanos , Recém-Nascido , Programas de Rastreamento/métodos , Programas de Rastreamento/estatística & dados numéricos , Erros Inatos do Metabolismo/epidemiologia , Triagem Neonatal/métodos , Pandemias , Fenilcetonúrias/diagnóstico , Fenilcetonúrias/epidemiologia , Fenilcetonúrias/terapia , SARS-CoV-2/fisiologia
9.
J Am Soc Nephrol ; 31(7): 1522-1537, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32503896

RESUMO

BACKGROUND: Mutations in the gene that encodes the lysosomal cystine transporter cystinosin cause the lysosomal storage disease cystinosis. Defective cystine transport leads to intralysosomal accumulation and crystallization of cystine. The most severe phenotype, nephropathic cystinosis, manifests during the first months of life, as renal Fanconi syndrome. The cystine-depleting agent cysteamine significantly delays symptoms, but it cannot prevent progression to ESKD and does not treat Fanconi syndrome. This suggests the involvement of pathways in nephropathic cystinosis that are unrelated to lysosomal cystine accumulation. Recent data indicate that one such potential pathway, lysosome-mediated degradation of autophagy cargoes, is compromised in cystinosis. METHODS: To identify drugs that reduce levels of the autophagy-related protein p62/SQSTM1 in cystinotic proximal tubular epithelial cells, we performed a high-throughput screening on the basis of an in-cell ELISA assay. We then tested a promising candidate in cells derived from patients with, and mouse models of, cystinosis, and in preclinical studies in cystinotic zebrafish. RESULTS: Of 46 compounds identified as reducing p62/SQSTM1 levels in cystinotic cells, we selected luteolin on the basis of its efficacy, safety profile, and similarity to genistein, which we previously showed to ameliorate other lysosomal abnormalities of cystinotic cells. Our data show that luteolin improves the autophagy-lysosome degradative pathway, is a powerful antioxidant, and has antiapoptotic properties. Moreover, luteolin stimulates endocytosis and improves the expression of the endocytic receptor megalin. CONCLUSIONS: Our data show that luteolin improves defective pathways of cystinosis and has a good safety profile, and thus has potential as a treatment for nephropathic cystinosis and other renal lysosomal storage diseases.


Assuntos
Antioxidantes/farmacologia , Cistinose/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos/métodos , Luteolina/farmacologia , RNA Mensageiro/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Animais , Antioxidantes/efeitos adversos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Células Cultivadas , Cistinose/metabolismo , Modelos Animais de Doenças , Endocitose/efeitos dos fármacos , Humanos , Túbulos Renais Proximais/patologia , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Luteolina/efeitos adversos , Lisossomos/efeitos dos fármacos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Fenótipo , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Peixe-Zebra
10.
J Am Soc Nephrol ; 31(5): 1092-1106, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32273301

RESUMO

BACKGROUND: Nephropathic cystinosis, a hereditary lysosomal storage disorder caused by dysfunction of the lysosomal cotransporter cystinosin, leads to cystine accumulation and cellular damage in various organs, particularly in the kidney. Close therapeutic monitoring of cysteamine, the only available disease-modifying treatment, is recommended. White blood cell cystine concentration is the current gold standard for therapeutic monitoring, but the assay is technically demanding and is available only on a limited basis. Because macrophage-mediated inflammation plays an important role in the pathogenesis of cystinosis, biomarkers of macrophage activation could have potential for the therapeutic monitoring of cystinosis. METHODS: We conducted a 2-year prospective, longitudinal study in which 61 patients with cystinosis who were receiving cysteamine therapy were recruited from three European reference centers. Each regular care visit included measuring four biomarkers of macrophage activation: IL-1ß, IL-6, IL-18, and chitotriosidase enzyme activity. RESULTS: A multivariate linear regression analysis of the longitudinal data for 57 analyzable patients found chitotriosidase enzyme activity and IL-6 to be significant independent predictors for white blood cell cystine levels in patients of all ages with cystinosis; a receiver operating characteristic analysis ranked chitotriosidase as superior to IL-6 in distinguishing good from poor therapeutic control (on the basis of white blood cell cystine levels of <2 nmol 1/2 cystine/mg protein or ≥2 nmol 1/2 cystine/mg protein, respectively). Moreover, in patients with at least one extrarenal complication, chitotriosidase significantly correlated with the number of extrarenal complications and was superior to white blood cell cystine levels in predicting the presence of multiple extrarenal complications. CONCLUSIONS: Chitotriosidase enzyme activity holds promise as a biomarker for use in therapeutic monitoring of nephropathic cystinosis.


Assuntos
Cisteamina/uso terapêutico , Cistinose/sangue , Monitoramento de Medicamentos/métodos , Hexosaminidases/sangue , Ativação de Macrófagos/efeitos dos fármacos , Adolescente , Adulto , Biomarcadores , Criança , Cisteamina/farmacologia , Cistina/sangue , Cistinose/tratamento farmacológico , Feminino , Humanos , Inflamação , Interleucina-18/sangue , Interleucina-1beta/sangue , Interleucina-6/sangue , Leucócitos/química , Masculino , Adesão à Medicação , Fragmentos de Peptídeos/sangue , Estudos Prospectivos , Adulto Jovem
12.
Nephron ; 141(2): 133-146, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30554218

RESUMO

Mutations in the CTNS gene encoding the lysosomal membrane cystine transporter cystinosin are the cause of cystinosis, an autosomal recessive lysosomal storage disease. More than 140 CTNS mutations have been reported worldwide. Recent studies have discovered that cystinosin exerts other key cellular functions beyond cystine transport such as regulation of oxidative state, lysosomal dynamics and autophagy. Here, we review the different mutations described in the CTNS gene and the geographical distribution of incidence. In addition, the characteristics of the various mutations in relation to the functions of cystinosin needs to be further elucidated. In this review, we highlight the functional consequences of the different mutations in correlation with the clinical phenotypes. Moreover, we propose how this understanding would be fundamental for the development of new technologies through targeted gene therapy, holding promises for a possible cure of the kidney and extra-renal phenotypes of cystinosis.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/genética , Cistinose/genética , Reparo do DNA , Mutação , Animais , Cistinose/epidemiologia , Modelos Animais de Doenças , Genótipo , Geografia , Humanos , Incidência , Fenótipo
13.
Am J Transplant ; 18(11): 2823-2828, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30030899

RESUMO

Cystinosis is an autosomal recessive lysosomal storage disorder characterized by the defective transport of the amino acid cystine out of the lysosome due to a deficiency of cystinosin, the lysosomal cystine transporter. Patients have lysosomal cystine accumulation in various tissues, leading to cellular stress and damage, particularly in the kidney, cornea, and other extrarenal tissues. Cysteamine, a cystine-depleting agent, improves survival and delays the progression of disease, but it does not prevent the development of either renal failure or extrarenal complications. Furthermore, the drug has severe adverse effects that significantly reduce patient compliance. Allogeneic hematopoietic stem cell transplantation (HSCT) is currently established as a therapeutic option for many inborn errors of metabolism, where the main pathologic driving factor is an enzyme deficiency. Recent studies in the cystinosis mouse-model suggested that HSCT could be a curative treatment alternative to cysteamine therapy. We treated a 16-year-old boy who had infantile cystinosis and side effects of cysteamine therapy with HSCT. We were able to demonstrate successful transfer of the wild-type cystinosin protein and CTNS mRNA to nonhematological epithelial cells in the recipient, as well as a decrease in the tissue cystine-crystal burden. This is the first report of allogeneic HSCT in a patient with cystinosis, the prototype of lysosomal membrane-transporter disorders.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/administração & dosagem , Cistinose/terapia , Células Epiteliais/metabolismo , Transplante de Células-Tronco Hematopoéticas , Adolescente , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Cistinose/genética , Humanos , Masculino , Mutação , Prognóstico , Transplante Homólogo
14.
Matrix Biol ; 68-69: 44-66, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29574063

RESUMO

Connective tissue growth factor, also known as CCN2, is a cysteine-rich matricellular protein involved in the control of biological processes, such as cell proliferation, differentiation, adhesion and angiogenesis, as well as multiple pathologies, such as tumor development and tissue fibrosis. Here, we describe the molecular and biological characteristics of CTGF, its regulation and various functions in the spectrum of development and regeneration to fibrosis. We further outline the preclinical and clinical studies concerning compounds targeting CTGF in various pathologies with the focus on heart, lung, liver, kidney and solid organ transplantation. Finally, we address the advances and pitfalls of translational fibrosis research and provide suggestions to move towards a better management of fibrosis.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/química , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Cicatrização , Biomarcadores/metabolismo , Adesão Celular , Diferenciação Celular , Proliferação de Células , Fator de Crescimento do Tecido Conjuntivo/genética , Fibrose , Regulação da Expressão Gênica , Humanos , Neoplasias/metabolismo , Pesquisa Translacional Biomédica
15.
JIMD Rep ; 42: 47-51, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29214524

RESUMO

Cystinosis is a hereditary genetic disease that results in the accumulation of cystine crystals in the lysosomes, leading to many clinical manifestations. One of these manifestations is the formation of corneal cystine crystals, which can cause serious ocular complications. The only available drug to treat cystinosis is cysteamine, which breaks cystine and depletes its accumulation in the lysosomes. However, the oral form of cysteamine is not effective in treating corneal manifestations. Thus, ophthalmic solutions of cysteamine are applied. Because the commercial cysteamine eye drops are not available in most countries, hospital pharmacies are responsible for preparing "homemade" drops usually without a control of stability of cysteamine in different storage conditions. Hence, we aimed in this study to investigate the effect of different storage conditions on the stability of a cysteamine ophthalmic compounded solution. Cysteamine ophthalmic solution was prepared in the hospital pharmacy and sterilized using a candle filter. The preparations are then stored either in the freezer at -20°C or in the refrigerator at +4°C for up to 52 weeks. The amount of cysteamine hydrochloride in the preparation at different time points was determined using capillary electrophoresis (CE). Storage of the cysteamine ophthalmic preparations at +4° resulted in significant loss of free cysteamine at all time points, from 1 to 52 weeks of storage, when compared with storage in the freezer (-20°C). We demonstrate that cysteamine 0.5% compounded eye drops are easily oxidized within the first week after storage at +4°C, rendering the preparation less effective. Storage at -20°C is recommended to prevent this process.

16.
Curr Pharm Des ; 23(38): 5911-5918, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28990525

RESUMO

BACKGROUND: Finding the right drug-dosage for neonates is still a challenge. Until now, neonatal doses are extrapolated from adults and children doses. However, there are differences between neonatal and adult kidney physiology that should be considered, especially when it comes to drug metabolism and/or transport. Studying renal drug disposition in neonates is limited by the lack of reliable human cell models. OBJECTIVE: To illustrate the feasibility of developing an in vitro model for neonatal proximal tubule epithelial cells (nPTECs) to study renal drug disposition at this age. METHOD: nPTECs were isolated from urine samples of neonates of different gestational ages and were conditionally immortalized using a temperature sensitive SV40T antigen and human telomerase hTERT. Cell clones were characterized on gene expression level for PTEC markers such as P-glycoprotein (ABCB1), aquaporin1 (AQP1), and organic cation transport protein 2 (SLC22A2), and for kidney progenitor cell and podocyte markers. In addition, protein expression and functional assessment were performed for P-gp and OCT2. RESULTS: We established 101 clonal cell lines of conditionally immortalized nPTECs derived from neonatal urines. Characterization of primary cells lines showed expression of genes from different cell types such as progenitors, PTECs and podocytes, however the developed conditionally immortalized nPTECs only expressed proximal tubule markers. Quantitative PCR analysis confirmed the expression of proximal tubule markers in nPTECs similar to the adult control PTECs. P-gp was expressed in nPTECs derived from the different gestational ages with a similar functionality compared with adult derived PTECs. In contrast, OCT2 functionality was significantly lower in nPTEC cell lines compared with adult PTECs. CONCLUSION: We demonstrate the feasibility of culturing proximal tubule epithelial cells with high efficiency from urine of neonates. These cells expressed PTEC-specific genes and functional drug transporters. The cell model presented is a valuable tool to study proximal tubule physiology and pharmacology in newborns. In addition, we demonstrate the physiological differences between the neonatal and adult kidney, which emphasizes the importance of studying drug disposition in neonatal models instead of extrapolating from adult data.


Assuntos
Ciclosporinas/metabolismo , Resistência a Múltiplos Medicamentos/fisiologia , Células Epiteliais/metabolismo , Túbulos Renais Proximais/metabolismo , Linhagem Celular Transformada , Células Cultivadas , Ciclosporinas/farmacologia , Relação Dose-Resposta a Droga , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Humanos , Recém-Nascido , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/efeitos dos fármacos , Distribuição Tecidual
17.
PLoS One ; 12(7): e0182100, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28759637

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) is an inhibitor of megakaryopoiesis and platelet function. Recently, PACAP deficiency was observed in children with nephrotic syndrome (NS), associated with increased platelet count and aggregability and increased risk of thrombosis. To further study PACAP deficiency in NS, we used transgenic Tg(cd41:EGFP) zebrafish with GFP-labeled thrombocytes. We generated two models for congenital NS, a morpholino injected model targeting nphs1 (nephrin), which is mutated in the Finnish-type congenital NS. The second model was induced by exposure to the nephrotoxic compound adriamycin. Nephrin RNA expression was quantified and zebrafish embryos were live-screened for proteinuria and pericardial edema as evidence of renal impairment. Protein levels of PACAP and its binding-protein ceruloplasmin were measured and GFP-labeled thrombocytes were quantified. We also evaluated the effects of PACAP morpholino injection and the rescue effects of PACAP-38 peptide in both congenital NS models. Nephrin downregulation and pericardial edema were observed in both nephrin morpholino injected and adriamycin exposed congenital NS models. However, PACAP deficiency was demonstrated only in the adriamycin exposed condition. Ceruloplasmin levels and the number of GFP-labeled thrombocytes remained unchanged in both models. PACAP morpholino injections worsened survival rates and the edema phenotype in both congenital NS models while injection with human PACAP-38 could only rescue the adriamycin exposed model. We hereby report, for the first time, PACAP deficiency in a NS zebrafish model as a consequence of adriamycin exposure. However, distinct from the human congenital NS, both zebrafish models retained normal levels of ceruloplasmin and thrombocytes. We further extend the renoprotective effects of the PACAP-38 peptide against adriamycin toxicity in zebrafish.


Assuntos
Proteínas de Membrana/metabolismo , Síndrome Nefrótica/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Plaquetas/metabolismo , Ceruloplasmina/metabolismo , Doxorrubicina/toxicidade , Proteínas de Membrana/genética , Síndrome Nefrótica/etiologia , Síndrome Nefrótica/genética , Fragmentos de Peptídeos/farmacologia , Pericárdio/efeitos dos fármacos , Pericárdio/metabolismo , Pericárdio/patologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/química , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
18.
Sci Rep ; 7: 42583, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28198397

RESUMO

The human ubiquitous protein cystinosin is responsible for transporting the disulphide amino acid cystine from the lysosomal compartment into the cytosol. In humans, Pathogenic mutations of CTNS lead to defective cystinosin function, intralysosomal cystine accumulation and the development of cystinosis. Kidneys are initially affected with generalized proximal tubular dysfunction (renal Fanconi syndrome), then the disease rapidly affects glomeruli and progresses towards end stage renal failure and multiple organ dysfunction. Animal models of cystinosis are limited, with only a Ctns knockout mouse reported, showing cystine accumulation and late signs of tubular dysfunction but lacking the glomerular phenotype. We established and characterized a mutant zebrafish model with a homozygous nonsense mutation (c.706 C > T; p.Q236X) in exon 8 of ctns. Cystinotic mutant larvae showed cystine accumulation, delayed development, and signs of pronephric glomerular and tubular dysfunction mimicking the early phenotype of human cystinotic patients. Furthermore, cystinotic larvae showed a significantly increased rate of apoptosis that could be ameliorated with cysteamine, the human cystine depleting therapy. Our data demonstrate that, ctns gene is essential for zebrafish pronephric podocyte and proximal tubular function and that the ctns-mutant can be used for studying the disease pathogenic mechanisms and for testing novel therapies for cystinosis.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Cistinose/genética , Cistinose/metabolismo , Glomérulos Renais/metabolismo , Túbulos Renais Proximais/metabolismo , Mutação , Sequência de Aminoácidos , Animais , Apoptose/genética , Cistina/metabolismo , Cistinose/mortalidade , Cistinose/patologia , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Taxa de Filtração Glomerular , Humanos , Glomérulos Renais/patologia , Glomérulos Renais/ultraestrutura , Túbulos Renais Proximais/patologia , Túbulos Renais Proximais/ultraestrutura , Locomoção , Lisossomos/metabolismo , Fenótipo , Podócitos/metabolismo , Podócitos/patologia , Podócitos/ultraestrutura , Peixe-Zebra
19.
Curr Opin Pediatr ; 29(2): 168-178, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28107209

RESUMO

PURPOSE OF REVIEW: Over the past few decades, cystinosis, a rare lysosomal storage disorder, has evolved into a treatable metabolic disease. The increasing understanding of its pathophysiology has made cystinosis a prototype disease, delivering new insights into several fundamental biochemical and cellular processes. RECENT FINDINGS: In this review, we aim to provide an overview of the latest advances in the pathogenetic, clinical, and therapeutic aspects of cystinosis. SUMMARY: The development of alternative therapeutic monitoring strategies and new systemic and ocular cysteamine formulations might improve outcome of cystinosis patients in the near future. With the dawn of stem cell based therapy and new emerging gene-editing technologies, novel tools have become available in the search for a cure for cystinosis.


Assuntos
Cisteamina/uso terapêutico , Cistinose/diagnóstico , Cistinose/terapia , Síndrome Nefrótica/diagnóstico , Síndrome Nefrótica/terapia , Feminino , Previsões , Terapia Genética/métodos , Humanos , Lactente , Recém-Nascido , Masculino , Prognóstico , Medição de Risco , Índice de Gravidade de Doença , Transplante de Células-Tronco/métodos , Resultado do Tratamento
20.
Cell Calcium ; 60(4): 282-7, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27451386

RESUMO

Nephropathic cystinosis is an autosomal recessive lysosomal storage disorder caused by loss-of-function mutations in the CTNS gene coding for the lysosomal cystine transporter, cystinosin. Recent studies have demonstrated that, apart from cystine accumulation in the lysosomes, cystinosin-deficient cells, especially renal proximal tubular epithelial cells are characterized by abnormal vesicle trafficking and endocytosis, possible lysosomal dysfunction and perturbed intracellular signalling cascades. It is therefore possible that Ca(2+) signalling is disturbed in cystinosis, as it has been demonstrated for other disorders associated with lysosomal dysfunction, such as Gaucher, Niemann-Pick type C and Alzheimer's diseases. In this study we investigated ATP-induced, IP3-induced and lysosomal Ca(2+) release in human proximal tubular epithelial cells derived from control and cystinotic patients. No major dysregulation of intracellular Ca(2+) dynamics was found, although ATP-induced Ca(2+) release appeared slightly sensitized in cystinotic cells compared to control cells. Hence, these subtle changes in Ca(2+) signals elicited by agonists may contribute to the pathogenesis of the disease.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Células Epiteliais/metabolismo , Túbulos Renais Proximais/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/deficiência , Sistemas de Transporte de Aminoácidos Neutros/genética , Células Cultivadas , Cistinose/metabolismo , Cistinose/patologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA