Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 12(6): 1011-1016, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34141086

RESUMO

BCL-XL, an antiapoptotic member of the BCL-2 family of proteins, drives tumor survival and maintenance and thus represents a key target for cancer treatment. Herein we report the rational design of a novel series of selective BCL-XL inhibitors exemplified by A-1293102. This molecule contains structural elements of selective BCL-XL inhibitor A-1155463 and the dual BCL-XL/BCL-2 inhibitors ABT-737 and navitoclax, while representing a distinct pharmacophore as assessed by an objective cheminformatic evaluation. A-1293102 exhibited picomolar binding affinity to BCL-XL and both efficiently and selectively killed BCL-XL-dependent tumor cells. X-ray crystallographic analysis demonstrated a key hydrogen bonding network in the P2 binding pocket of BCL-XL, while the bent-back moiety achieved efficient occupancy of the P4 pocket in a manner similar to that of navitoclax. A-1293102 represents one of the few distinct structural series of selective BCL-XL inhibitors, and thus serves as a useful tool for biological studies as well as a lead compound for further optimization.

2.
Mol Cancer Ther ; 20(6): 999-1008, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33785651

RESUMO

Since gaining approval for the treatment of chronic lymphocytic leukemia (CLL), the BCL-2 inhibitor venetoclax has transformed the treatment of this and other blood-related cancers. Reflecting the large and hydrophobic BH3-binding groove within BCL-2, venetoclax has significantly higher molecular weight and lipophilicity than most orally administered drugs, along with negligible water solubility. Although a technology-enabled formulation successfully achieves oral absorption in humans, venetoclax tablets have limited drug loading and therefore can present a substantial pill burden for patients in high-dose indications. We therefore generated a phosphate prodrug (3, ABBV-167) that confers significantly increased water solubility to venetoclax and, upon oral administration to healthy volunteers either as a solution or high drug-load immediate release tablet, extensively converts to the parent drug. Additionally, ABBV-167 demonstrated a lower food effect with respect to venetoclax tablets. These data indicate that beyond-rule-of-5 molecules can be successfully delivered to humans via a solubility-enhancing prodrug moiety to afford robust exposures of the parent drug following oral dosing.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Pró-Fármacos/uso terapêutico , Sulfonamidas/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Estudos Cross-Over , Feminino , Voluntários Saudáveis , Humanos , Pró-Fármacos/farmacologia , Sulfonamidas/farmacologia
3.
ACS Med Chem Lett ; 11(10): 1829-1836, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33062160

RESUMO

Herein we describe the discovery of A-1331852, a first-in-class orally active BCL-XL inhibitor that selectively and potently induces apoptosis in BCL-XL-dependent tumor cells. This molecule was generated by re-engineering our previously reported BCL-XL inhibitor A-1155463 using structure-based drug design. Key design elements included rigidification of the A-1155463 pharmacophore and introduction of sp3-rich moieties capable of generating highly productive interactions within the key P4 pocket of BCL-XL. A-1331852 has since been used as a critical tool molecule for further exploring BCL-2 family protein biology, while also representing an attractive entry into a drug discovery program.

4.
J Med Chem ; 60(20): 8369-8384, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-28949521

RESUMO

The development of bromodomain and extraterminal domain (BET) bromodomain inhibitors and their examination in clinical studies, particularly in oncology settings, has garnered substantial recent interest. An effort to generate novel BET bromodomain inhibitors with excellent potency and drug metabolism and pharmacokinetics (DMPK) properties was initiated based upon elaboration of a simple pyridone core. Efforts to develop a bidentate interaction with a critical asparagine residue resulted in the incorporation of a pyrrolopyridone core, which improved potency by 9-19-fold. Additional structure-activity relationship (SAR) efforts aimed both at increasing potency and improving pharmacokinetic properties led to the discovery of the clinical candidate 63 (ABBV-075/mivebresib), which demonstrates excellent potency in biochemical and cellular assays, advantageous exposures and half-life both in animal models and in humans, and in vivo efficacy in mouse models of cancer progression and inflammation.


Assuntos
Descoberta de Drogas , Proteínas/antagonistas & inibidores , Piridonas/farmacologia , Sulfonamidas/farmacologia , Animais , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Transferência Ressonante de Energia de Fluorescência , Meia-Vida , Humanos , Espectrometria de Massas , Camundongos , Espectroscopia de Prótons por Ressonância Magnética , Piridonas/química , Piridonas/farmacocinética , Relação Estrutura-Atividade , Sulfonamidas/química , Sulfonamidas/farmacocinética
5.
J Med Chem ; 60(9): 3828-3850, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28368119

RESUMO

Members of the BET family of bromodomain containing proteins have been identified as potential targets for blocking proliferation in a variety of cancer cell lines. A two-dimensional NMR fragment screen for binders to the bromodomains of BRD4 identified a phenylpyridazinone fragment with a weak binding affinity (1, Ki = 160 µM). SAR investigation of fragment 1, aided by X-ray structure-based design, enabled the synthesis of potent pyridone and macrocyclic pyridone inhibitors exhibiting single digit nanomolar potency in both biochemical and cell based assays. Advanced analogs in these series exhibited high oral exposures in rodent PK studies and demonstrated significant tumor growth inhibition efficacy in mouse flank xenograft models.


Assuntos
Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacologia , Piridonas/química , Piridonas/farmacologia , Animais , Cristalografia por Raios X , Descoberta de Drogas , Compostos Macrocíclicos/farmacocinética , Estrutura Molecular , Piridonas/farmacocinética , Ratos , Relação Estrutura-Atividade
6.
Cancer Res ; 77(11): 2976-2989, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28416490

RESUMO

ABBV-075 is a potent and selective BET family bromodomain inhibitor that recently entered phase I clinical trials. Comprehensive preclinical characterization of ABBV-075 demonstrated broad activity across cell lines and tumor models, representing a variety of hematologic malignancies and solid tumor indications. In most cancer cell lines derived from solid tumors, ABBV-075 triggers prominent G1 cell-cycle arrest without extensive apoptosis. In this study, we show that ABBV-075 efficiently triggers apoptosis in acute myeloid leukemia (AML), non-Hodgkin lymphoma, and multiple myeloma cells. Apoptosis induced by ABBV-075 was mediated in part by modulation of the intrinsic apoptotic pathway, exhibiting synergy with the BCL-2 inhibitor venetoclax in preclinical models of AML. In germinal center diffuse large B-cell lymphoma, BCL-2 levels or venetoclax sensitivity predicted the apoptotic response to ABBV-075 treatment. In vivo combination studies uncovered surprising benefits of low doses of ABBV-075 coupled with bortezomib and azacitidine treatment, despite the lack of in vitro synergy between ABBV-075 and these agents. The in vitro/in vivo activities of ABBV-075 described here may serve as a useful reference to guide the development of ABBV-075 and other BET family inhibitors for cancer therapy. Cancer Res; 77(11); 2976-89. ©2017 AACR.


Assuntos
Antagonistas de Androgênios/uso terapêutico , Piridonas/uso terapêutico , Sulfonamidas/uso terapêutico , Antagonistas de Androgênios/farmacologia , Apoptose , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Piridonas/farmacologia , Sulfonamidas/farmacologia , Transfecção
7.
Bioorg Med Chem Lett ; 27(10): 2225-2233, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28268136

RESUMO

An NMR fragment screen for binders to the bromodomains of BRD4 identified 2-methyl-3-ketopyrroles 1 and 2. Elaboration of these fragments guided by structure-based design provided lead molecules with significant activity in a mouse tumor model. Further modifications to the methylpyrrole core provided compounds with improved properties and enhanced activity in a mouse model of multiple myeloma.


Assuntos
Antineoplásicos/química , Proteínas Nucleares/antagonistas & inibidores , Pirróis/química , Fatores de Transcrição/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Desenho de Fármacos , Meia-Vida , Humanos , Camundongos , Simulação de Dinâmica Molecular , Mieloma Múltiplo/tratamento farmacológico , Proteínas Nucleares/metabolismo , Pirróis/síntese química , Pirróis/farmacocinética , Pirróis/uso terapêutico , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo , Transplante Heterólogo
8.
Mol Cancer Ther ; 14(8): 1837-47, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26013319

RESUMO

Hyperexpression of antiapoptotic BCL-2 family proteins allows cells to survive despite the receipt of signals that would ordinarily induce their deletion, a facet frequently exploited by tumors. Tumors addicted to the BCL-2 family proteins for survival are now being targeted therapeutically. For example, navitoclax, a BCL-2/BCL-XL/BCL-W inhibitor, is currently in phase I/II clinical trials in numerous malignancies. However, the related family member, MCL-1, limits the efficacy of navitoclax and other chemotherapeutic agents. In the present study, we identify breast cancer cell lines that depend upon MCL-1 for survival and subsequently determine the mechanism of apoptosis mediated by the MCL-1 selective inhibitor A-1210477. We demonstrate that apoptosis resulting from a loss in MCL-1 function requires expression of the proapoptotic protein BAK. However, expression of BCL-XL can limit apoptosis resulting from loss in MCL-1 function through sequestration of free BIM. Finally, we demonstrate substantial synergy between navitoclax and MCL-1 siRNA, the direct MCL-1 inhibitor A-1210477, or the indirect MCL-1 inhibitor flavopiridol, highlighting the therapeutic potential for inhibiting BCL-XL and MCL-1 in breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Expressão Gênica , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Sulfonamidas/farmacologia , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
9.
Sci Transl Med ; 7(279): 279ra40, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25787766

RESUMO

The BCL-2/BCL-XL/BCL-W inhibitor ABT-263 (navitoclax) has shown promising clinical activity in lymphoid malignancies such as chronic lymphocytic leukemia. However, its efficacy in these settings is limited by thrombocytopenia caused by BCL-XL inhibition. This prompted the generation of the BCL-2-selective inhibitor venetoclax (ABT-199/GDC-0199), which demonstrates robust activity in these cancers but spares platelets. Navitoclax has also been shown to enhance the efficacy of docetaxel in preclinical models of solid tumors, but clinical use of this combination has been limited by neutropenia. We used venetoclax and the BCL-XL-selective inhibitors A-1155463 and A-1331852 to assess the relative contributions of inhibiting BCL-2 or BCL-XL to the efficacy and toxicity of the navitoclax-docetaxel combination. Selective BCL-2 inhibition suppressed granulopoiesis in vitro and in vivo, potentially accounting for the exacerbated neutropenia observed when navitoclax was combined with docetaxel clinically. By contrast, selectively inhibiting BCL-XL did not suppress granulopoiesis but was highly efficacious in combination with docetaxel when tested against a range of solid tumors. Therefore, BCL-XL-selective inhibitors have the potential to enhance the efficacy of docetaxel in solid tumors and avoid the exacerbation of neutropenia observed with navitoclax. These studies demonstrate the translational utility of this toolkit of selective BCL-2 family inhibitors and highlight their potential as improved cancer therapeutics.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Administração Oral , Compostos de Anilina/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Benzotiazóis/química , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular , Docetaxel , Perfilação da Expressão Gênica , Granulócitos/metabolismo , Humanos , Isoquinolinas/química , Cinética , Camundongos , Transplante de Neoplasias , Neoplasias/metabolismo , Neutropenia/induzido quimicamente , Neutrófilos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sulfonamidas/uso terapêutico , Taxoides/efeitos adversos , Trombocitopenia/induzido quimicamente , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/metabolismo
10.
J Med Chem ; 58(5): 2180-94, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25679114

RESUMO

Myeloid cell leukemia 1 (MCL-1) is a BCL-2 family protein that has been implicated in the progression and survival of multiple tumor types. Herein we report a series of MCL-1 inhibitors that emanated from a high throughput screening (HTS) hit and progressed via iterative cycles of structure-guided design. Advanced compounds from this series exhibited subnanomolar affinity for MCL-1 and excellent selectivity over other BCL-2 family proteins as well as multiple kinases and GPCRs. In a MCL-1 dependent human tumor cell line, administration of compound 30b rapidly induced caspase activation with associated loss in cell viability. The small molecules described herein thus comprise effective tools for studying MCL-1 biology.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Desenho de Fármacos , Mieloma Múltiplo/tratamento farmacológico , Proteína de Sequência 1 de Leucemia de Células Mieloides/química , Neoplasias Pancreáticas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Bases de Dados Factuais , Ensaios de Triagem em Larga Escala , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Ligação Proteica , Relação Estrutura-Atividade , Células Tumorais Cultivadas
11.
ACS Med Chem Lett ; 5(10): 1088-93, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25313317

RESUMO

A-1155463, a highly potent and selective BCL-XL inhibitor, was discovered through nuclear magnetic resonance (NMR) fragment screening and structure-based design. This compound is substantially more potent against BCL-XL-dependent cell lines relative to our recently reported inhibitor, WEHI-539, while possessing none of its inherent pharmaceutical liabilities. A-1155463 caused a mechanism-based and reversible thrombocytopenia in mice and inhibited H146 small cell lung cancer xenograft tumor growth in vivo following multiple doses. A-1155463 thus represents an excellent tool molecule for studying BCL-XL biology as well as a productive lead structure for further optimization.

12.
ACS Med Chem Lett ; 5(6): 662-7, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24944740

RESUMO

Because of the promise of BCL-2 antagonists in combating chronic lymphocytic leukemia (CLL) and non-Hodgkin's lymphoma (NHL), interest in additional selective antagonists of antiapoptotic proteins has grown. Beginning with a series of selective, potent BCL-XL antagonists containing an undesirable hydrazone functionality, in silico design and X-ray crystallography were utilized to develop alternative scaffolds that retained the selectivity and potency of the starting compounds.

13.
Nat Med ; 19(2): 202-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23291630

RESUMO

Proteins in the B cell CLL/lymphoma 2 (BCL-2) family are key regulators of the apoptotic process. This family comprises proapoptotic and prosurvival proteins, and shifting the balance toward the latter is an established mechanism whereby cancer cells evade apoptosis. The therapeutic potential of directly inhibiting prosurvival proteins was unveiled with the development of navitoclax, a selective inhibitor of both BCL-2 and BCL-2-like 1 (BCL-X(L)), which has shown clinical efficacy in some BCL-2-dependent hematological cancers. However, concomitant on-target thrombocytopenia caused by BCL-X(L) inhibition limits the efficacy achievable with this agent. Here we report the re-engineering of navitoclax to create a highly potent, orally bioavailable and BCL-2-selective inhibitor, ABT-199. This compound inhibits the growth of BCL-2-dependent tumors in vivo and spares human platelets. A single dose of ABT-199 in three patients with refractory chronic lymphocytic leukemia resulted in tumor lysis within 24 h. These data indicate that selective pharmacological inhibition of BCL-2 shows promise for the treatment of BCL-2-dependent hematological cancers.


Assuntos
Antineoplásicos/farmacologia , Plaquetas/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Neoplasias Hematológicas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonamidas/farmacologia , Compostos de Anilina/farmacologia , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cães , Feminino , Células HeLa , Humanos , Camundongos , Camundongos SCID , Proteínas Proto-Oncogênicas c-bcl-2/química , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína bcl-X/antagonistas & inibidores
14.
Mol Cancer Ther ; 10(12): 2340-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21914853

RESUMO

The ability of a cancer cell to avoid apoptosis is crucial to tumorigenesis and can also contribute to chemoresistance. The Bcl-2 family of prosurvival proteins (Bcl-2, Bcl-X(L), Bcl-w, Mcl-1, and A1) plays a key role in these processes. We previously reported the discovery of ABT-263 (navitoclax), a potent small-molecule inhibitor of Bcl-2, Bcl-X(L), and Bcl-w. While navitoclax exhibits single-agent activity in tumors dependent on Bcl-2 or Bcl-X(L) for survival, the expression of Mcl-1 has been shown to confer resistance to navitoclax, most notably in solid tumors. Thus, therapeutic agents that can downregulate or neutralize Mcl-1 are predicted to synergize potently with navitoclax. Here, we report the activity of navitoclax in combination with 19 clinically relevant agents across a panel of 46 human solid tumor cell lines. Navitoclax broadly enhanced the activity of multiple therapeutic agents in vitro and enhanced efficacy of both docetaxel and erlotinib in xenograft models. The ability of navitoclax to synergize with docetaxel or erlotinib corresponded to an altered sensitivity of the mitochondria toward navitoclax, which was associated with the downmodulation of Mcl-1 and/or upregulation of Bim. These data provide a rationale to interrogate these combinations clinically.


Assuntos
Compostos de Anilina/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias/tratamento farmacológico , Sulfonamidas/farmacologia , Compostos de Anilina/administração & dosagem , Animais , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Sinergismo Farmacológico , Feminino , Células HCT116 , Células Hep G2 , Humanos , Células K562 , Masculino , Camundongos , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonamidas/administração & dosagem , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína bcl-X/antagonistas & inibidores
15.
Bioorg Med Chem Lett ; 20(24): 7503-6, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21106457

RESUMO

We describe the development of a novel series of N-aryl-benzimidazolone HSP90 inhibitors (9) targeting the N-terminal ATP-ase site. SAR development was influenced by structure-based design based around X-ray structures of ligand bound HSP90 complexes. Lead compounds exhibited high binding affinities, ATP-ase inhibition and cellular client protein degradation.


Assuntos
Benzimidazóis/química , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Benzimidazóis/síntese química , Benzimidazóis/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Cristalografia por Raios X , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
16.
Lancet Oncol ; 11(12): 1149-59, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21094089

RESUMO

BACKGROUND: Proteins of the BCL-2 family regulate clonal selection and survival of lymphocytes, and are frequently overexpressed in lymphomas. Navitoclax is a targeted high-affinity small molecule that inhibits the anti-apoptotic activity of BCL-2 and BCL-XL. We aimed to assess the safety and antitumour activity of navitoclax in patients with lymphoid tumours, and establish the drug's pharmacokinetic and pharmacodynamic profiles. METHODS: In this phase 1 dose-escalation study, patients (aged ≥18 years) with relapsed or refractory lymphoid malignancies were enrolled and treated at seven sites in the USA between November, 2006, and November, 2009. A modified Fibonacci 3+3 design was used to assign patients to receive oral navitoclax once daily by one of two dosing schedules: intermittently for the first 14 days of a 21-day cycle (14/21) at doses of 10, 20, 40, 80, 110, 160, 225, 315, or 440 mg/day; or continuously for 21 days of a 21-day cycle (21/21) at doses of 200, 275, 325, or 425 mg/day. Study endpoints were safety, maximum tolerated dose, pharmacokinetic profile, pharmacodynamic effects on platelets and T cells, and antitumour activity. This trial is registered with ClinicalTrials.gov, number NCT00406809. FINDINGS: 55 patients were enrolled (median age 59 years, IQR 51-67), 38 to receive the 14/21 dosing schedule, and 17 to receive the 21/21 dosing schedule. Common toxic effects included grade 1 or 2 anaemia (41 patients), infection (39), diarrhoea (31), nausea (29), and fatigue (21); and grade 3 or 4 thrombocytopenia (29), lymphocytopenia (18), and neutropenia (18). On the intermittent 14/21 schedule, dose-limiting toxic effects were hospital admissions for bronchitis (one) and pleural effusion (one), grade 3 increase in aminotransferases (one), grade 4 thrombocytopenia (one), and grade 3 cardiac arrhythmia (one). To reduce platelet nadir associated with intermittent 14/21 dosing, we assessed a 150 mg/day lead-in dose followed by a continuous 21/21 dosing schedule. On the 21/21 dosing schedule, two patients did not complete the first cycle and were excluded from assessment of dose-limiting toxic effects; dose-limiting toxic effects were grade 4 thrombocytopenia (one), grade 3 increase in aminotransferases (one), and grade 3 gastrointestinal bleeding (one). Navitoclax showed a pharmacodynamic effect on circulating platelets and T cells. Clinical responses occurred across the range of doses and in several tumour types. Ten of 46 patients with assessable disease had a partial response, and these responders had median progression-free survival of 455 days (IQR 40-218). INTERPRETATION: Navitoclax has a novel mechanism of peripheral thrombocytopenia and T-cell lymphopenia, attributable to high-affinity inhibition of BCL-XL and BCL-2, respectively. On the basis of these findings, a 150 mg 7-day lead-in dose followed by a 325 mg dose administered on a continuous 21/21 dosing schedule was selected for phase 2 study. FUNDING: Abbott Laboratories, Genentech, and National Cancer Institute, National Institutes of Health.


Assuntos
Compostos de Anilina/farmacocinética , Compostos de Anilina/uso terapêutico , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos , Linfoma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonamidas/farmacocinética , Sulfonamidas/uso terapêutico , Idoso , Compostos de Anilina/efeitos adversos , Compostos de Anilina/farmacologia , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Plaquetas/efeitos dos fármacos , Formas de Dosagem , Humanos , Dose Máxima Tolerável , Pessoa de Meia-Idade , Sulfonamidas/efeitos adversos , Sulfonamidas/farmacologia , Análise de Sobrevida , Linfócitos T/efeitos dos fármacos
17.
Bioorg Med Chem Lett ; 20(22): 6587-91, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20870405

RESUMO

The Bcl-2 family of proteins plays a major role in the regulation of apoptosis, or programmed cell death. Overexpression of the anti-apoptotic members of this family (Bcl-2, Bcl-x(L), and Mcl-1) can render cancer cells resistant to chemotherapeutic agents and therefore these proteins are important targets for the development of new anti-cancer agents. Here we describe the discovery of a potent, highly selective, Bcl-2 inhibitor using SAR by NMR and structure-based drug design which could serve as a starting point for the development of a Bcl-2 selective anti-cancer agent. Such an agent would potentially overcome the Bcl-x(L) mediated thrombocytopenia observed with ABT-263.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Modelos Moleculares , Relação Estrutura-Atividade
18.
Cancer Chemother Pharmacol ; 66(5): 869-80, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20099064

RESUMO

PURPOSE: This study was designed to test the ability of the Bcl-2 family inhibitor ABT-263 to potentiate commonly used chemotherapeutic agents and regimens in hematologic tumor models. METHODS: Models of B-cell lymphoma and multiple myeloma were tested in vitro and in vivo with ABT-263 in combination with standard chemotherapeutic regimens, including VAP, CHOP and R-CHOP, as well as single cytotoxic agents including etoposide, rituximab, bortezomib and cyclophosphamide. Alterations in Bcl-2 family member expression patterns were analyzed to define mechanisms of potentiation. RESULTS: ABT-263 was additive with etoposide, vincristine and VAP in vitro in the diffuse large B-cell lymphoma line (DLBCL) DoHH-2, while rituximab potentiated its activity in SuDHL-4. Bortezomib strongly synergized with ABT-263 in the mantle cell lymphoma line Granta 519. Treatment of DoHH-2 with etoposide was associated with an increase in Puma expression, while bortezomib upregulated Noxa expression in Granta 519. Combination of ABT-263 with cytotoxic agents demonstrated superior tumor growth inhibition and delay in multiple models versus cytotoxic therapy alone, along with significant improvements in tumor response rates. CONCLUSIONS: Inhibition of the Bcl-2 family of proteins by ABT-263 enhances the cytotoxicity of multiple chemotherapeutics in hematologic tumors and represents a promising addition to the therapeutic arsenal for treatment of these diseases.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Linfoma de Células B/tratamento farmacológico , Mieloma Múltiplo/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Compostos de Anilina/administração & dosagem , Animais , Proteínas Reguladoras de Apoptose/genética , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Linfoma de Células B/patologia , Camundongos , Camundongos SCID , Mieloma Múltiplo/patologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Sulfonamidas/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
19.
J Immunol ; 182(12): 7482-9, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19494271

RESUMO

The Bcl-2 family of proteins plays a critical role in controlling immune responses by regulating the expansion and contraction of activated lymphocyte clones by apoptosis. ABT-737, which was originally developed for oncology, is a potent inhibitor of Bcl-2, Bcl-x(L), and Bcl-w protein function. There is evidence that Bcl-2-associated dysregulation of lymphocyte apoptosis may contribute to the pathogenesis of autoimmunity and lead to the development of autoimmune diseases. In this study, we report that ABT-737 treatment resulted in potent inhibition of lymphocyte proliferation as measured by in vitro mitogenic or ex vivo Ag-specific stimulation. More importantly, ABT-737 significantly reduced disease severity in tissue-specific and systemic animal models of autoimmunity. Bcl-2 family antagonism by ABT-737 was efficacious in treating animal models of arthritis and lupus. Our results suggest that treatment with a Bcl-2 family antagonist represents a novel and potentially attractive therapeutic approach for the clinical treatment of autoimmunity.


Assuntos
Autoimunidade/efeitos dos fármacos , Compostos de Bifenilo/farmacologia , Nitrofenóis/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonamidas/farmacologia , Animais , Apresentação de Antígeno/efeitos dos fármacos , Artrite Experimental/induzido quimicamente , Artrite Experimental/imunologia , Artrite Experimental/patologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Hemocianinas/imunologia , Humanos , Hipersensibilidade Tardia/imunologia , Interferon-alfa/farmacologia , Nefrite Lúpica/induzido quimicamente , Nefrite Lúpica/imunologia , Nefrite Lúpica/patologia , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Camundongos , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Especificidade por Substrato
20.
J Med Chem ; 51(21): 6902-15, 2008 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-18841882

RESUMO

Overexpression of prosurvival proteins such as Bcl-2 and Bcl-X L has been correlated with tumorigenesis and resistance to chemotherapy, and thus, the development of antagonists of these proteins may provide a novel means for the treatment of cancer. We recently described the discovery of 1 (ABT-737), which binds Bcl-2, Bcl-X L, and Bcl-w with high affinity, shows robust antitumor activity in murine tumor xenograft models, but is not orally bioavailable. Herein, we report that targeted modifications at three key positions of 1 resulted in a 20-fold improvement in the pharmacokinetic/pharmacodynamic relationship (PK/PD) between oral exposure (AUC) and in vitro efficacy in human tumor cell lines (EC 50). The resulting compound, 2 (ABT-263), is orally efficacious in an established xenograft model of human small cell lung cancer, inducing complete tumor regressions in all animals. Compound 2 is currently in multiple phase 1 clinical trials in patients with small cell lung cancer and hematological malignancies.


Assuntos
Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Administração Oral , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Camundongos , Estrutura Molecular , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Sulfonamidas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA