Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 14(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35454783

RESUMO

Sialic acid (SA) is a monosaccharide usually linked to the terminus of glycan chains on the cell surface. It plays a crucial role in many biological processes, and hypersialylation is a common feature in cancer. Lectins are widely used to analyze the cell surface expression of SA. However, these protein molecules are usually expensive and easily denatured, which calls for the development of alternative glycan-specific receptors and cell imaging technologies. In this study, SA-imprinted fluorescent core-shell molecularly imprinted polymer particles (SA-MIPs) were employed to recognize SA on the cell surface of cancer cell lines. The SA-MIPs improved suspensibility and scattering properties compared with previously used core-shell SA-MIPs. Although SA-imprinting was performed using SA without preference for the α2,3- and α2,6-SA forms, we screened the cancer cell lines analyzed using the lectins Maackia Amurensis Lectin I (MAL I, α2,3-SA) and Sambucus Nigra Lectin (SNA, α2,6-SA). Our results show that the selected cancer cell lines in this study presented a varied binding behavior with the SA-MIPs. The binding pattern of the lectins was also demonstrated. Moreover, two different pentavalent SA conjugates were used to inhibit the binding of the SA-MIPs to breast, skin, and lung cancer cell lines, demonstrating the specificity of the SA-MIPs in both flow cytometry and confocal fluorescence microscopy. We concluded that the synthesized SA-MIPs might be a powerful future tool in the diagnostic analysis of various cancer cells.

2.
ACS Chem Biol ; 15(10): 2683-2691, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32845119

RESUMO

Coxsackievirus A24 variant (CVA24v) and human adenovirus 37 (HAdV-37) are leading causative agents of the severe and highly contagious ocular infections acute hemorrhagic conjunctivitis and epidemic keratoconjunctivitis, respectively. Currently, neither vaccines nor antiviral agents are available for treating these diseases, which affect millions of individuals worldwide. CVA24v and HAdV-37 utilize sialic acid as attachment receptors facilitating entry into host cells. Previously, we and others have shown that derivatives based on sialic acid are effective in preventing HAdV-37 binding and infection of cells. Here, we designed and synthesized novel pentavalent sialic acid conjugates and studied their inhibitory effect against CVA24v and HAdV-37 binding and infection of human corneal epithelial cells. The pentavalent conjugates are the first reported inhibitors of CVA24v infection and proved efficient in blocking HAdV-37 binding. Taken together, the pentavalent conjugates presented here form a basis for the development of general inhibitors of these highly contagious ocular pathogens.


Assuntos
Adenovírus Humanos/efeitos dos fármacos , Antivirais/farmacologia , Enterovirus Humano C/efeitos dos fármacos , Ácidos Siálicos/farmacologia , Adenovírus Humanos/química , Sítios de Ligação , Enterovirus Humano C/química , Humanos , Ligação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
3.
Virulence ; 11(1): 795-804, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32507000

RESUMO

PSEUDOMONAS AERUGINOSA: is an opportunistic pathogen and a major cause of corneal infections worldwide. The bacterium secretes several toxins through its type III secretion system (T3SS) to subvert host immune responses. In addition, it is armed with intrinsic as well as acquired antibiotic resistance mechanisms that make treatment a significant challenge and new therapeutic interventions are needed. Type III secretion inhibitors have been studied as an alternative or in accompaniment to traditional antibiotics to inhibit virulence of bacteria. In this study, INP0341, a T3SS inhibitor, inhibited cytotoxicity by P. aeruginosa toward human corneal epithelial cells (HCEC) at 100 µM without affecting bacterial growth in the liquid media. An increased expression of antimicrobial peptides and reactive oxygen species generation was also observed in cells exposed to P. aeruginosa in the presence of INP0341. Furthermore, INP0341 efficiently attenuated corneal infection by P. aeruginosa in an experimental model of murine keratitis as evident from corneal opacity, clinical score and bacterial load. Thus, INP0341 appears to be a promising candidate to treat corneal infection caused by P. aeruginosa and can be further considered as an alternative therapeutic intervention.


Assuntos
Antibacterianos/uso terapêutico , Células Epiteliais/efeitos dos fármacos , Hidrazinas/uso terapêutico , Ceratite/tratamento farmacológico , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , Carga Bacteriana/efeitos dos fármacos , Linhagem Celular , Córnea/citologia , Córnea/efeitos dos fármacos , Córnea/microbiologia , Modelos Animais de Doenças , Células Epiteliais/microbiologia , Humanos , Ceratite/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Pseudomonas aeruginosa/patogenicidade , Sistemas de Secreção Tipo III/antagonistas & inibidores , Virulência
4.
Viruses ; 11(5)2019 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-31035532

RESUMO

Human adenoviruses (HAdV) are the most common cause of ocular infections. Species B human adenovirus type 3 (HAdV-B3) causes pharyngoconjunctival fever (PCF), whereas HAdV-D8, -D37, and -D64 cause epidemic keratoconjunctivitis (EKC). Recently, HAdV-D53, -D54, and -D56 emerged as new EKC-causing agents. HAdV-E4 is associated with both PCF and EKC. We have previously demonstrated that HAdV-D37 uses sialic acid (SA)-containing glycans as cellular receptors on human corneal epithelial (HCE) cells, and the virus interaction with SA is mediated by the knob domain of the viral fiber protein. Here, by means of cell-based assays and using neuraminidase (a SA-cleaving enzyme), we investigated whether ocular HAdVs other than HAdV-D37 also use SA-containing glycans as receptors on HCE cells. We found that HAdV-E4 and -D56 infect HCE cells independent of SAs, whereas HAdV-D53 and -D64 use SAs as cellular receptors. HAdV-D8 and -D54 fiber knobs also bound to cell-surface SAs. Surprisingly, HCE cells were found resistant to HAdV-B3 infection. We also demonstrated that the SA-based molecule i.e., ME0462, designed to bind to SA-binding sites on the HAdV-D37 fiber knob, efficiently prevents binding and infection of several EKC-causing HAdVs. Surface plasmon resonance analysis confirmed a direct interaction between ME0462 and fiber knobs. Altogether, we demonstrate that SA-containing glycans serve as receptors for multiple EKC-causing HAdVs, and, that SA-based compound function as a broad-spectrum antiviral against known and emerging EKC-causing HAdVs.


Assuntos
Infecções por Adenovirus Humanos/metabolismo , Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/fisiologia , Ácido N-Acetilneuramínico/metabolismo , Polissacarídeos/metabolismo , Receptores Virais/metabolismo , Tropismo Viral , Células A549 , Sequência de Aminoácidos , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Humanos , Ceratoconjuntivite/metabolismo , Ceratoconjuntivite/virologia , Análise de Sequência de DNA
5.
Biochem Biophys Res Commun ; 511(1): 117-121, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30773257

RESUMO

The effect of corticosteroids on human physiology is complex and their use in tuberculosis patients remains controversial. In a high-throughput screening approach designed to discover virulence inhibitors, several corticosteroids were found to prevent cytolysis of fibroblasts infected with mycobacteria. Further experiments with Mycobacterium tuberculosis showed anti-cytolytic activity in the 10 nM range, but no effect on bacterial growth or survival in the absence of host cells at 20 µM. The results from a panel of corticosteroids with various affinities to the glucocorticoid- and mineralocorticoid receptors indicate that the inhibition of cytolysis most likely is mediated through the glucocorticoid receptor. Using live-imaging of M. tuberculosis-infected human monocyte-derived macrophages, we also show that corticosteroids to some extent control intracellular bacteria. In vitro systems with reduced complexity are to further study and understand the interactions between bacterial infection, immune defense and cell signaling.


Assuntos
Corticosteroides/farmacologia , Fibroblastos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Tuberculose/tratamento farmacológico , Antituberculosos/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/microbiologia , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Mycobacterium tuberculosis/efeitos dos fármacos , Receptores de Glucocorticoides/metabolismo , Tuberculose/metabolismo , Tuberculose/microbiologia
6.
Cell Death Differ ; 26(9): 1615-1630, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30442946

RESUMO

PARP3 has been shown to be a key driver of TGFß-induced epithelial-to-mesenchymal transition (EMT) and stemness in breast cancer cells, emerging as an attractive therapeutic target. Nevertheless, the therapeutic value of PARP3 inhibition has not yet been assessed. Here we investigated the impact of the absence of PARP3 or its inhibition on the tumorigenicity of BRCA1-proficient versus BRCA1-deficient breast cancer cell lines, focusing on the triple-negative breast cancer subtype (TNBC). We show that PARP3 knockdown exacerbates centrosome amplification and genome instability and reduces survival of BRCA1-deficient TNBC cells. Furthermore, we engineered PARP3-/- BRCA1-deficient or BRCA1-proficient TNBC cell lines using the CRISPR/nCas9D10A gene editing technology and demonstrate that the absence of PARP3 selectively suppresses the growth, survival and in vivo tumorigenicity of BRCA1-deficient TNBC cells, mechanistically via effects associated with an altered Rictor/mTORC2 signaling complex resulting from enhanced ubiquitination of Rictor. Accordingly, PARP3 interacts with and ADP-ribosylates GSK3ß, a positive regulator of Rictor ubiquitination and degradation. Importantly, these phenotypes were rescued by re-expression of a wild-type PARP3 but not by a catalytic mutant, demonstrating the importance of PARP3's catalytic activity. Accordingly, reduced survival and compromised Rictor/mTORC2 signaling were also observed using a cell-permeable PARP3-specific inhibitor. We conclude that PARP3 and BRCA1 are synthetic lethal and that targeting PARP3's catalytic activity is a promising therapeutic strategy for BRCA1-associated cancers via the Rictor/mTORC2 signaling pathway.


Assuntos
Proteína BRCA1/genética , Proteínas de Ciclo Celular/genética , Poli(ADP-Ribose) Polimerases/genética , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Neoplasias de Mama Triplo Negativas/genética , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Xenoenxertos , Humanos , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Camundongos , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Neoplasias de Mama Triplo Negativas/patologia
7.
Sci Rep ; 8(1): 1925, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29386590

RESUMO

Rift Valley fever virus (RVFV) is a mosquito-borne hemorrhagic fever virus affecting both humans and animals with severe morbidity and mortality and is classified as a potential bioterror agent due to the possible aerosol transmission. At present there is no human vaccine or antiviral therapy available. Thus, there is a great need to develop new antivirals for treatment of RVFV infections. Benzavir-2 was previously identified as potent inhibitor of human adenovirus, herpes simplex virus type 1, and type 2. Here we assess the anti-RVFV activity of benzavir-2 together with four structural analogs and determine pre-clinical pharmacokinetic parameters of benzavir-2. In vitro, benzavir-2 efficiently inhibited RVFV infection, viral RNA production and production of progeny viruses. In vitro, benzavir-2 displayed satisfactory solubility, good permeability and metabolic stability. In mice, benzavir-2 displayed oral bioavailability with adequate maximum serum concentration. Oral administration of benzavir-2 formulated in peanut butter pellets gave high systemic exposure without any observed toxicity in mice. To summarize, our data demonstrated potent anti-RVFV activity of benzavir-2 in vitro together with a promising pre-clinical pharmacokinetic profile. This data support further exploration of the antiviral activity of benzavir-2 in in vivo efficacy models that may lead to further drug development for human use.


Assuntos
Antivirais/farmacologia , Antivirais/farmacocinética , Benzoatos/farmacologia , Benzoatos/farmacocinética , Vírus da Febre do Vale do Rift/fisiologia , Células A549 , Administração Oral , Animais , Antivirais/administração & dosagem , Antivirais/química , Benzoatos/administração & dosagem , Benzoatos/química , Disponibilidade Biológica , Feminino , Humanos , Camundongos Endogâmicos BALB C , RNA Viral/genética , Febre do Vale de Rift/tratamento farmacológico , Febre do Vale de Rift/prevenção & controle , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/efeitos dos fármacos
8.
SLAS Discov ; 23(4): 353-362, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29316839

RESUMO

Macrodomains recognize intracellular adenosine diphosphate (ADP)-ribosylation resulting in either removal of the modification or a protein interaction event. Research into compounds that modulate macrodomain functions could make important contributions. We investigated the interactions of all seven individual macrodomains of the human poly(ADP-ribose) polymerase (PARP) family members PARP9, PARP14, and PARP15 with five mono-ADP-ribosylated (automodified) ADP-ribosyltransferase domains using an AlphaScreen assay. Several mono-ADP-ribosylation-dependent interactions were identified, and they were found to be in the micromolar affinity range using surface plasmon resonance (SPR). We then focused on the interaction between PARP14 macrodomain-2 and the mono-ADP-ribosylated PARP10 catalytic domain, and probed a ~1500-compound diverse library for inhibitors of this interaction using AlphaScreen. Initial hit compounds were verified by concentration-response experiments using AlphaScreen and SPR, and they were tested against PARP14 macrodomain-2 and -3. Two initial hit compounds and one chemical analog each were further characterized using SPR and microscale thermophoresis. In conclusion, our results reveal novel macrodomain interactions and establish protocols for identification of inhibitors of such interactions.


Assuntos
Bioensaio/métodos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , ADP Ribose Transferases/metabolismo , ADP-Ribosilação/efeitos dos fármacos , Adenosina Difosfato Ribose/metabolismo , Humanos , Pentosiltransferases
9.
Eur J Med Chem ; 143: 1077-1089, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29232584

RESUMO

A natural product inspired library was synthesized based on 2,3-diarylbenzofuran and 2,3-diaryl-2,3-dihydrobenzofuran scaffolds. The library of forty-eight compounds was prepared by utilizing Pd-catalyzed one-pot multicomponent reactions and ruthenium-catalyzed intramolecular carbenoid C-H insertions. The compounds were evaluated for antibacterial activity in a panel of test systems including phenotypic, biochemical and image-based screening assays. We identified several potent inhibitors that block intracellular replication of pathogenic Chlamydia trachomatis with IC50 ≤ 3 µM. These new C. trachomatis inhibitors can serve as starting points for the development of specific treatments that reduces the global burden of C. trachomatis infections.


Assuntos
Antibacterianos/farmacologia , Benzofuranos/farmacologia , Produtos Biológicos/farmacologia , Chlamydia trachomatis/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Benzofuranos/síntese química , Benzofuranos/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Estereoisomerismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
10.
Artigo em Inglês | MEDLINE | ID: mdl-28784680

RESUMO

The type II fatty acid synthesis (FASII) pathway is essential for bacterial lipid biosynthesis and continues to be a promising target for novel antibacterial compounds. Recently, it has been demonstrated that Chlamydia is capable of FASII and this pathway is indispensable for Chlamydia growth. Previously, a high-content screen with Chlamydia trachomatis-infected cells was performed, and acylated sulfonamides were identified to be potent growth inhibitors of the bacteria. C. trachomatis strains resistant to acylated sulfonamides were isolated by serial passage of a wild-type strain in the presence of low compound concentrations. Results from whole-genome sequencing of 10 isolates from two independent drug-resistant populations revealed that mutations that accumulated in fabF were predominant. Studies of the interaction between the FabF protein and small molecules showed that acylated sulfonamides directly bind to recombinant FabF in vitro and treatment of C. trachomatis-infected HeLa cells with the compounds leads to a decrease in the synthesis of Chlamydia fatty acids. This work demonstrates the importance of FASII for Chlamydia development and may lead to the development of new antimicrobials.


Assuntos
Antibacterianos/farmacologia , Chlamydia trachomatis/efeitos dos fármacos , Ácido Graxo Sintase Tipo II/metabolismo , Inibidores da Síntese de Ácidos Graxos/farmacologia , Ácidos Graxos/biossíntese , Sulfametoxazol/farmacologia , Acilação/efeitos dos fármacos , Adamantano/farmacologia , Aminobenzoatos/farmacologia , Anilidas/farmacologia , Animais , Linhagem Celular Tumoral , Cerulenina/farmacologia , Infecções por Chlamydia/tratamento farmacológico , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/genética , Chlamydia trachomatis/metabolismo , Chlorocebus aethiops , Ácido Graxo Sintase Tipo II/genética , Células HeLa , Humanos , Triclosan/farmacologia , Células Vero
11.
Adv Synth Catal ; 358(24): 4085-4092, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-28701908

RESUMO

Resveratrol-based natural products constitute a valuable source of unique compounds with diverse biological activities. In this report we investigate demethylation strategies to minimize formation of cyclized and dimerized products during the synthesis of viniferifuran and analogues. We found that boron trichloride/tetra-n-butylammonium iodide (BCl3/TBAI) is typically more effective than boron tribromide (BBr3). Based on these findings we carried out the first syntheses of dehydro-δ-viniferin, resveratrol-piceatannol hybrid and anigopreissin A. In addition, we have developed a short and efficient route to viniferifuran that was obtained in 13% yield over six steps.

12.
Org Biomol Chem ; 13(35): 9194-205, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26177934

RESUMO

Adenovirus type 37 (Ad37) is one of the principal agents responsible for epidemic keratoconjunctivitis (EKC), a severe ocular infection that remains without any available treatment. Recently, a trivalent sialic acid derivative (ME0322, Angew. Chem. Int. Ed., 2011, 50, 6519) was shown to function as a highly potent inhibitor of Ad37, efficiently preventing the attachment of the virion to the host cells and subsequent infection. Here, new trivalent sialic acid derivatives were designed, synthesized and their inhibitory properties against Ad37 infection of the human corneal epithelial cells were investigated. In comparison to ME0322, the best compound (17a) was found to be over three orders of magnitude more potent in a cell-attachment assay (IC50 = 1.4 nM) and about 140 times more potent in a cell-infection assay (IC50 = 2.9 nM). X-ray crystallographic analysis demonstrated a trivalent binding mode of all compounds to the Ad37 fiber knob. For the most potent compound ophthalmic toxicity in rabbits was investigated and it was concluded that repeated eye administration did not cause any adverse effects.


Assuntos
Adenoviridae/efeitos dos fármacos , Adenoviridae/fisiologia , Córnea/citologia , Células Epiteliais/virologia , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/farmacologia , Triazóis/química , Animais , Antivirais/síntese química , Antivirais/química , Antivirais/farmacologia , Química Click , Desenho de Fármacos , Células Epiteliais/efeitos dos fármacos , Humanos , Masculino , Modelos Moleculares , Conformação Molecular , Ácido N-Acetilneuramínico/análogos & derivados , Ácido N-Acetilneuramínico/síntese química , Coelhos
13.
Eur J Med Chem ; 101: 595-603, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26204507

RESUMO

Discovery of new polypharmacological antibacterial agents with multiple modes of actions can be an alternative to combination therapy and also a possibility to slow development of antibiotic resistance. In support to this hypothesis, we synthesized 16 compounds by combining the pharmacophores of Chlamydia trachomatis inhibitors and inhibitors of type III secretion (T3S) in gram-negative bacteria. In this study we have developed salicylidene acylhydrazide sulfonamides (11c &11d) as new antichlamydial agents that also inhibit T3S in Yersinia pseudotuberculosis.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Desenho de Fármacos , Hidrazinas/farmacologia , Polifarmacologia , Sulfonamidas/farmacologia , Yersinia pseudotuberculosis/efeitos dos fármacos , Antibacterianos/química , Relação Dose-Resposta a Droga , Hidrazinas/síntese química , Hidrazinas/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química
14.
Eur J Med Chem ; 95: 546-51, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25847771

RESUMO

Protein ADP-ribosylation is a post-translational modification involved in DNA repair, protein degradation, transcription regulation, and epigenetic events. Intracellular ADP-ribosylation is catalyzed predominantly by ADP-ribosyltransferases with diphtheria toxin homology (ARTDs). The most prominent member of the ARTD family, poly(ADP-ribose) polymerase-1 (ARTD1/PARP1) has been a target for cancer drug development for decades. Current PARP inhibitors are generally non-selective, and inhibit the mono-ADP-ribosyltransferases with low potency. Here we describe the synthesis of acylated amino benzamides and screening against the mono-ADP-ribosyltransferases ARTD7/PARP15, ARTD8/PARP14, ARTD10/PARP10, and the poly-ADP-ribosyltransferase ARTD1/PARP1. The most potent compound inhibits ARTD10 with sub-micromolar IC50.


Assuntos
ADP Ribose Transferases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Concentração Inibidora 50
15.
J Biomol Screen ; 20(2): 285-91, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25281739

RESUMO

Invasive mycoses have been increasing worldwide, with Candida spp. being the most prevalent fungal pathogen causing high morbidity and mortality in immunocompromised individuals. Only few antimycotics exist, often with severe side effects. Therefore, new antifungal drugs are urgently needed. Because the identification of antifungal compounds depends on fast and reliable assays, we present a new approach based on high-throughput image analysis to define cell morphology. Candida albicans and other fungi of the Candida clade switch between different growth morphologies, from budding yeast to filamentous hyphae. Yeasts are considered proliferative, whereas hyphae are required for invasion and dissemination. Thus, morphotype switching in many Candida spp. is connected to virulence and pathogenesis. It is, consequently, reasonable to presume that morphotype blockers interfere with the virulence, thereby preventing hazardous colonization. Our method efficiently differentiates yeast from hyphal cells using a combination of automated microscopy and image analysis. We selected the parameters length/width ratio and mean object shape to quantitatively discriminate yeasts and hyphae. Notably, Z' factor calculations for these parameters confirmed the suitability of our method for high-throughput screening. As a second stage, we determined cell viability to discriminate morphotype-switching inhibitors from those that are fungicidal. Thus, our method serves as a basis for the identification of candidates for next-generation antimycotics.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Hifas/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Candida/genética , Candida/metabolismo , Humanos , Testes de Sensibilidade Microbiana/métodos , Viabilidade Microbiana/efeitos dos fármacos , Microscopia/métodos
16.
J Bacteriol ; 196(16): 2989-3001, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24914180

RESUMO

Chlamydiae are widespread Gram-negative pathogens of humans and animals. Salicylidene acylhydrazides, developed as inhibitors of type III secretion system (T3SS) in Yersinia spp., have an inhibitory effect on chlamydial infection. However, these inhibitors also have the capacity to chelate iron, and it is possible that their antichlamydial effects are caused by iron starvation. Therefore, we have explored the modification of salicylidene acylhydrazides with the goal to uncouple the antichlamydial effect from iron starvation. We discovered that benzylidene acylhydrazides, which cannot chelate iron, inhibit chlamydial growth. Biochemical and genetic analyses suggest that the derivative compounds inhibit chlamydiae through a T3SS-independent mechanism. Four single nucleotide polymorphisms were identified in a Chlamydia muridarum variant resistant to benzylidene acylhydrazides, but it may be necessary to segregate the mutations to differentiate their roles in the resistance phenotype. Benzylidene acylhydrazides are well tolerated by host cells and probiotic vaginal Lactobacillus species and are therefore of potential therapeutic value.


Assuntos
Antibacterianos/farmacologia , Compostos de Benzilideno/farmacologia , Chlamydia muridarum/efeitos dos fármacos , Chlamydia muridarum/crescimento & desenvolvimento , Análise Mutacional de DNA , Farmacorresistência Bacteriana , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
17.
Mar Drugs ; 12(2): 799-821, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24477283

RESUMO

Adenovirus infections in immunocompromised patients are associated with high mortality rates. Currently, there are no effective anti-adenoviral therapies available. It is well known that actinobacteria can produce secondary metabolites that are attractive in drug discovery due to their structural diversity and their evolved interaction with biomolecules. Here, we have established an extract library derived from actinobacteria isolated from Vestfjorden, Norway, and performed a screening campaign to discover anti-adenoviral compounds. One extract with anti-adenoviral activity was found to contain a diastereomeric 1:1 mixture of the butenolide secondary alcohols 1a and 1b. By further cultivation and analysis, we could isolate 1a and 1b in different diastereomeric ratio. In addition, three more anti-adenoviral butenolides 2, 3 and 4 with differences in their side-chains were isolated. In this study, the anti-adenoviral activity of these compounds was characterized and substantial differences in the cytotoxic potential between the butenolide analogs were observed. The most potent butenolide analog 3 displayed an EC50 value of 91 µM and no prominent cytotoxicity at 2 mM. Furthermore, we propose a biosynthetic pathway for these compounds based on their relative time of appearance and structure.


Assuntos
Actinobacteria/metabolismo , Infecções por Adenoviridae/tratamento farmacológico , Adenoviridae/efeitos dos fármacos , Antivirais/farmacologia , Infecções por Adenoviridae/virologia , Antivirais/química , Antivirais/isolamento & purificação , Organismos Aquáticos/química , Relação Dose-Resposta a Droga , Descoberta de Drogas/métodos , Humanos , Noruega , Estereoisomerismo
18.
ACS Chem Biol ; 8(8): 1698-703, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23742272

RESUMO

Inhibiting ADP-ribosyl transferases with PARP-inhibitors is considered a promising strategy for the treatment of many cancers and ischemia, but most of the cellular targets are poorly characterized. Here, we describe an inhibitor of ADP-ribosyltransferase-3/poly(ADP-ribose) polymerase-3 (ARTD3), a regulator of DNA repair and mitotic progression. In vitro profiling against 12 members of the enzyme family suggests selectivity for ARTD3, and crystal structures illustrate the molecular basis for inhibitor selectivity. The compound is active in cells, where it elicits ARTD3-specific effects at submicromolar concentration. Our results show that by targeting the nicotinamide binding site, selective inhibition can be achieved among the closest relatives of the validated clinical target, ADP-ribosyltransferase-1/poly(ADP-ribose) polymerase-1.


Assuntos
ADP Ribose Transferases/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases , Quinazolinonas/química , ADP Ribose Transferases/química , Domínio Catalítico , Linhagem Celular , Cristalografia por Raios X , Sistemas de Liberação de Medicamentos , Estabilidade de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/química , Humanos , Concentração Inibidora 50 , Modelos Moleculares , Estrutura Molecular , Niacinamida/química , Poli(ADP-Ribose) Polimerases/química , Quinazolinonas/farmacologia
19.
J Med Chem ; 55(17): 7706-18, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-22823910

RESUMO

The diphtheria toxin-like ADP-ribosyltransferases (ARTDs) are an enzyme family that catalyzes the transfer of ADP-ribose units onto substrate proteins by using nicotinamide adenine dinucleotide (NAD(+)) as a cosubstrate. They have a documented role in chromatin remodelling and DNA repair, and inhibitors of ARTD1 and 2 (PARP1 and 2) are currently in clinical trials for the treatment of cancer. The detailed function of most other ARTDs is still unknown. By using virtual screening, we identified small ligands of ARTD7 (PARP15/BAL3) and ARTD8 (PARP14/BAL2). Thermal-shift assays confirmed that 16 compounds, belonging to eight structural classes, bound to ARTD7/ARTD8. Affinity measurements with isothermal titration calorimetry for two isomers of the most promising hit compound confirmed binding in the low micromolar range to ARTD8. Crystal structures showed anchoring of the hits in the nicotinamide pocket. These results form a starting point in the development of chemical tools for the study of the role and function of ARTD7 and ARTD8.


Assuntos
ADP Ribose Transferases/metabolismo , Descoberta de Drogas , Ligantes , Modelos Moleculares
20.
J Med Chem ; 55(7): 3170-81, 2012 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-22369233

RESUMO

2-[2-Benzoylamino)benzoylamino]benzoic acid (1) was previously identified as a potent and nontoxic antiadenoviral compound (Antimicrob. Agents Chemother. 2010, 54, 3871). Here, the potency of 1 was improved over three generations of compounds. We found that the ortho, ortho substituent pattern and the presence of the carboxylic acid of 1 are favorable for this class of compounds and that the direction of the amide bonds (as in 1) is obligatory. Some variability in the N-terminal moiety was tolerated, but benzamides appear to be preferred. The substituents on the middle and C-terminal rings were varied, resulting in two potent inhibitors, 35g and 35j, with EC(50) = 0.6 µM and low cell toxicity.


Assuntos
Adenoviridae/efeitos dos fármacos , Antivirais/síntese química , Benzamidas/síntese química , Benzoatos/síntese química , Adenoviridae/fisiologia , Antivirais/química , Antivirais/farmacologia , Benzamidas/química , Benzamidas/farmacologia , Benzoatos/química , Benzoatos/farmacologia , Linhagem Celular Tumoral , Humanos , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA