Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-13, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265952

RESUMO

Five known furofuran lignans, dia-sesamin (1), 5-methoxysesamin (2), epi-magnolin (3), kobusin (4) and yangambin (5) were isolated for the first-time from the oleo-gum resin of Commiphora wightii. This is the first report on the 13C NMR assignments for epi-magnolin (3). Each of the isolated compounds was evaluated for its ability to inhibit MIA PaCa-2 pancreatic cancer cell line. Among them, epi-magnolin (3) displayed potential activity (IC50 = 29 nM) compared to colchicine (IC50 = 56 nM). 3D-flexible alignment revealed that epi-magnolin (3) has great matching with the tubulin polymerization inhibitor, colchicine. Meanwhile, docking studies exhibited that compounds 1-5 displayed good binding free energies against colchicine binding site (CBS) of tubulin with binding modes that were highly comparable to that of colchicine. Compounds 2, 3, and 5 showed superior binding free energies than colchicine (-24.37 kcal/mol). epi-Magnolin (3) showed the highest binding score against CBS. MD simulation studies confirmed the stability of epi-magnolin (3) in the active site for 200 ns. Furthermore, four online servers (Swiss ADME, pkCSM pharmacokinetics, AdmetSAR, and ProTox-II) were utilized to predict the ADMET parameters. The in-silico pharmacokinetics predictions reveled that epi-magnolin (3) has significant oral bioavailability and drug-like capabilities.Communicated by Ramaswamy H. Sarma.

2.
Comb Chem High Throughput Screen ; 25(5): 831-837, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33538664

RESUMO

BACKGROUND: Deubiquitinating enzymes (DUBs) protein family have been implicated in some deregulated pathways involved in carcinogeneses, such as cell cycle, gene expression, and DNA damage response (DDR). Zinc finger with UFM1-specific peptidase domain protein (ZUFSP) is one of the recently discovered members of the DUBs. OBJECTIVES: To identify and cross-validate the ZUFSP binding site using the bioinformatic tools, including SiteMap&Metapocket, respectively. To understand the molecular basis of complementary ZUFSP-Ub interaction and associated structural events using MD Simulation. METHODS: In this study, four binding pockets were predicted, characterized, and cross-validated based on physiochemical features such as site score, druggability score, site volume, and site size. Also, a molecular dynamics simulation technique was employed to determine the impact of ubiquitin-binding on ZUFSP. RESULTS: Site 1 with a site score 1.065, Size 102, D scores 1.00, and size volume 261 was predicted to be the most druggable site. Structural studies revealed that upon ubiquitin-binding, the motional movement of ZUFSP was reduced when compared to the unbound ZUFSP. Also, the ZUFSP helical arm (ZHA) domain orient in such a way that it moves closer to the Ub; this orientation enables the formation of a UBD which is very peculiar to ZUFSP. CONCLUSION: The impact of ubiquitin on ZUFSP movement and the characterization of its predicted druggable site can be targeted in the development of therapeutics.


Assuntos
Ubiquitina , Dedos de Zinco , Peptídeo Hidrolases/metabolismo , Ligação Proteica , Domínios Proteicos , Ubiquitina/metabolismo
3.
Pharm Dev Technol ; 25(9): 1090-1108, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32684052

RESUMO

In this study self-assembled drug delivery system (SADDs) composed of a hydrophobic d-α-tocopherol succinate (TS) and a hydrophilic vancomycin (VCM) were formulated, and its potential for enhancing the antibacterial activity of VCM against Staphylococcus aureus (SA) and Methicillin-resistant Staphylococcus aureus (MRSA) were explored. The SADDs were synthesized via supramolecular complexation, then characterized for in silico, in vitro and in vivo studies. In silico studies confirmed the self-assembly of VCM/TS into NPs. The size, surface charge and drug loading of the SADDs was ˂100 nm, -27 mV and 68%, respectively. The SADDs were non-hemolytic and biosafe. A sustained release of VCM from SADDs was noted, with 52.2% release after 48 hr. The in vitro antibacterial test showed a twofold decrease in Minimum inhibitory concentration (MIC) against SA and MRSA, and a significantly higher reduction in MRSA biofilms compared to bare VCM. Further, in silico studies confirmed strong and stable binding of TS to MRSA efflux pumps. The in vivo study using mice skin infection models showed a 9.5-fold reduction in bacterial load after treatment with SADDs, in comparison with bare VCM. These findings affirmed that VCM/TS NPs as a promising novel nano-delivery for treating bacterial infections.


Assuntos
Antibacterianos/farmacologia , Vancomicina/farmacologia , alfa-Tocoferol/farmacologia , Células A549 , Animais , Linhagem Celular , Linhagem Celular Tumoral , Simulação por Computador , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Células HEK293 , Humanos , Células MCF-7 , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana/métodos , Nanopartículas/química , Tamanho da Partícula , Infecções Estafilocócicas/tratamento farmacológico
4.
Comb Chem High Throughput Screen ; 23(8): 687-698, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32338212

RESUMO

For the past few decades, the mechanisms of immune responses to cancer have been exploited extensively and significant attention has been given into utilizing the therapeutic potential of the immune system. Cancer immunotherapy has been established as a promising innovative treatment for many forms of cancer. Immunotherapy has gained its prominence through various strategies, including cancer vaccines, monoclonal antibodies (mAbs), adoptive T cell cancer therapy, and immune checkpoint therapy. However, the full potential of cancer immunotherapy is yet to be attained. Recent studies have identified the use of bioinformatics tools as a viable option to help transform the treatment paradigm of several tumors by providing a therapeutically efficient method of cataloging, predicting and selecting immunotherapeutic targets, which are known bottlenecks in the application of immunotherapy. Herein, we gave an insightful overview of the types of immunotherapy techniques used currently, their mechanisms of action, and discussed some bioinformatics tools and databases applied in the immunotherapy of cancer. This review also provides some future perspectives in the use of bioinformatics tools for immunotherapy.


Assuntos
Antineoplásicos/farmacologia , Biologia Computacional/métodos , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/terapia , Anticorpos Monoclonais/imunologia , Vacinas Anticâncer/imunologia , Terapia Combinada/métodos , Descoberta de Drogas , Inibidores Enzimáticos/imunologia , Inibidores Enzimáticos/farmacologia , Humanos , Imunidade/efeitos dos fármacos , Terapia de Alvo Molecular , Linfócitos T/imunologia , Resultado do Tratamento
5.
Anticancer Agents Med Chem ; 19(13): 1642-1650, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31250767

RESUMO

BACKGROUND: Aberrant and proliferative expression of the oncogene BCR-ABL in bone marrow cells is one of the prime causes of Chronic Myeloid Leukemia (CML). It has been established that the tyrosine kinase domain of the BCR-ABL protein is a potential therapeutic target for the treatment of CML. Although the first and second line inhibitors against the enzyme are available, recent studies have indicated that monotherapeutic resistance has become a great challenge. OBJECTIVE: In recent studies, the dual inhibition of BCR-ABL by Nilotinib and Asciminib has been shown to overcome drug resistance. This prompted us to investigate the dynamics behind this novel drug combination. METHODS: By the utilization of a wide range of computational tools, we defined and compared BCR-ABL's structural and dynamic characteristics when bound as a dual inhibitor system. RESULTS: Conformational ensemble analysis presented a sustained inactive protein, as the activation loop, inclusive of the characteristic Tyr257, remained in an open position due to the unassailable binding of Asciminib at the allosteric site. Nilotinib also indicated stronger binding at the catalytic site in the presence of Asciminib, thus exposing new avenues in treating Nilotinib-resistance. This was in accordance with intermolecular hydrogen bond interactions with key binding site residues GLU399, Asn259 and Thr252. CONCLUSION: The investigations carried out in this study gave rise to new possibilities in the treatment of resistance in CML, as well as assisting in the design of novel and selective inhibitors as dual anti-cancer drugs.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/metabolismo , Niacinamida/análogos & derivados , Pirazóis/farmacologia , Pirimidinas/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Combinação de Medicamentos , Sinergismo Farmacológico , Humanos , Simulação de Dinâmica Molecular , Niacinamida/administração & dosagem , Niacinamida/química , Niacinamida/farmacologia , Pirazóis/administração & dosagem , Pirazóis/química , Pirimidinas/administração & dosagem , Pirimidinas/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA