Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Med Sci Educ ; 33(5): 1061-1071, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37886269

RESUMO

Background: During Spring 2021, we piloted a course model that integrated the immune system and HEENT (head, eyes, ears, nose, and throat) by concurrently presenting them in the context of clinical cases. Immune system topics (e.g., infection, cancer) were tied to their manifestations in the HEENT system, and concepts from both systems were consolidated in weekly case-based learning and small group discussion (CBL/SGD) sessions. Methods: To evaluate students' perceptions of the effectiveness of this model, we administered to the class a voluntary survey containing closed- and open-ended items; conducted a focus group of 10 students selected via convenience sampling; and employed a mixed approach to analyze the resulting data, including multiple qualitative methods. Results: Thirty-nine of 74 students completed the survey (53% response rate). In response to the item related to overall effectiveness of using CBL/SGD for system integration, nearly half (48.72%) of these students rated the overall effectiveness as average. Constant comparison analysis of the qualitative data revealed three major themes-student satisfaction with integration of immunology and HEENT, content and time involved in CBL/SGD, and suggestions for improvement-and classical content analysis revealed the relative importance of these themes. Participants held positive and negative perceptions, expressed concerns regarding CBL/SGD (e.g., its helpfulness, complexity), and made suggestions for improvement of integration. Conclusions: Using multiple methods allowed us to gain a deeper understanding of students' perceptions of the new course model, and we have taken actions to improve course quality in the future.

2.
Biomolecules ; 13(7)2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37509180

RESUMO

In this review, we provide an overview of the current understanding of the main mechanisms of pharmacological action of essential oils and their components in various biological systems. A brief introduction on essential oil chemistry is presented to better understand the relationship of chemical aspects with the bioactivity of these products. Next, the antioxidant, anti-inflammatory, antitumor, and antimicrobial activities are discussed. The mechanisms of action against various types of viruses are also addressed. The data show that the multiplicity of pharmacological properties of essential oils occurs due to the chemical diversity in their composition and their ability to interfere with biological processes at cellular and multicellular levels via interaction with various biological targets. Therefore, these natural products can be a promising source for the development of new drugs.


Assuntos
Óleos Voláteis , Vírus , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óleos de Plantas/química , Antioxidantes/farmacologia , Antioxidantes/química , Anti-Inflamatórios/farmacologia
3.
Pathogens ; 11(7)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35890042

RESUMO

Background:Toxoplasma gondii (T. gondii) is an opportunistic parasite that causes serious diseases in humans, particularly immunocompromised individuals and pregnant women. To date, there are limited numbers of therapeutics for chronic toxoplasmosis which necessitate the discovery of effective and safe therapeutics. In the present study, we aimed to evaluate the antitoxoplasmosis potential of ginger extract in mice with experimentally induced chronic toxoplasmosis. Results: Treatment with ginger extract significantly reduced cysts count in the brains of T. gondii-infected mice with a marked alleviation of edema and inflammation, and a reversal of neuronal injury. Moreover, ginger extract treatment reduced inflammation in liver and lungs and protected hepatocytes from infection-induced degeneration. Consistently, apoptosis was significantly mitigated in the brains of ginger extract-treated mice compared to infected untreated animals or spiramycin-treated animals. Methods: Four groups of Swiss albino mice (10 mice each) were used. The first group was not infected, whereas 3 groups were infected with Me49 T. gondii strains. One infected group remained untreated (infected untreated), whereas the other two infected groups were treated with either ginger extract (250 mg/kg) or spiramycin (positive control; 100 mg/kg), respectively. The therapeutic potential of ginger extract was evaluated by calculation of the parasite burden in infected animals, and examination of the infected tissues for reduced pathologic changes. Conclusions: Our results showed for the first time that ginger extract exhibited marked therapeutic effects in mice with chronic T. gondii infection which indicates that it can be used as a safe and effective treatment for chronic toxoplasmosis.

4.
J Food Biochem ; 46(2): e14037, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34981531

RESUMO

Obesity is a predisposing factor to diseases such as diabetes mellitus, hypertension, and coronary artery disease. Lemongrass essential oil (LEO), from Cymbopogon flexuosus, possesses numerous therapeutic properties including modulation of obesity in vivo. This experiment investigated the effect of LEO and its major components citral (3,7-dimethyl-2,6-octadienal), citral dimethyl acetal (1,1-dimethoxy-3,7-dimethylocta-2,6-diene), and citral diethyl acetal (1,1-diethoxy-3,7-dimethylocta-2,6-diene) in modulation of adipogenesis and genetic expression in adipocytes. Adipogenesis was induced from murine 3T3-L1 preadipocytes procured from ATCC and maintained in Dulbecco's modified Eagle's medium (DMEM) enriched with calf serum. Differentiation was conducted using DMEM enriched with 10% fetal bovine serum, Dexamethasone 0.25 µM, 3-isobutyl-methylxanthine 0.5 mM, and insulin 10 mg/ml for 2 days, followed by 5 days of insulin 10 mg/ml alone. Samples were subjected to experimental treatments at a concentration of 2.5 × 10-3 . Intracellular triglycerides were quantified and photomicrographs were obtained following Oil red O (ORO) staining procedure. Total ribonucleic acid was extracted and expression of genes effecting in lipid metabolism were quantitated using real-time polymerase chain reaction. ORO staining procedure and spectrophotometric analysis demonstrated decreased lipid accumulation following treatments. LEO and its major constituents significantly inhibited expression of sterol response binding protein 2, cluster of differentiation 36, fatty acid binding protein 4, and peripilin. These results indicate modulation of lipid accumulation through decreased lipid uptake, increased lipolysis, decreased differentiation, and downregulated lipid biosynthesis. This investigation suggests that LEO and its constituents exert effects on adipocyte metabolism and are important for understanding metabolic disease. Further investigation is required to elucidate the degree that each mechanism implicated contributes to the observed effect.


Assuntos
Cymbopogon , Óleos Voláteis , Células 3T3-L1 , Monoterpenos Acíclicos , Adipogenia , Animais , Expressão Gênica , Camundongos , Óleos Voláteis/farmacologia
5.
Antibiotics (Basel) ; 10(6)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208266

RESUMO

Giardiasis is a major diarrheal disease affecting approximately 2.5 million children annually in developing countries. Several studies have reported the resistance of Giardia lamblia (G. lamblia) to multiple drugs. Therefore, identifying an effective drug for giardiasis is a necessity. This study examined the antiparasitic effect of Punica granatum (pomegranate) and evaluated its therapeutic efficacy in rats infected with G. lamblia. In vitro study showed high efficacy of pomegranate peel ethanolic extract in killing G. lamblia cysts as demonstrated by eosin vital staining. We showed that treating infected rats with pomegranate extract resulted in a marked reduction in the mean number of G. lamblia cysts and trophozoites in feces and intestine respectively. Interestingly, the number of G. lamblia trophozoites and cysts were significantly lower in the pomegranate extract-treated group compared to the metronidazole-positive control group. Moreover, pomegranate extract treatment significantly induced nitric oxide (NO) and reduced serum IL-6 and TNF-α, compared to infected untreated rats. Histological and scanning electron microscopy (SEM) examination of the jejunum and duodenum of pomegranate extract-treated animals confirmed the antiparasitic effect of the extract, and demonstrated the restoration of villi structure with reduction of villi atrophy, decreased infiltration of lymphocytes, and protection of intestinal cells from apoptotic cell death. In conclusion, our data show that the pomegranate peel extract is effective in controlling G. lamblia infections, which suggests that it could be a viable treatment option for giardiasis.

6.
Arthritis Rheumatol ; 73(11): 2003-2014, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33982895

RESUMO

OBJECTIVE: In rheumatoid arthritis (RA), elevated serum interleukin-34 (IL-34) levels are linked with increased disease severity. IL-34 binds to 2 receptors, macrophage colony-stimulating factor receptor (M-CSFR) and syndecan 1, which are coexpressed in RA macrophages. Expression of both IL-34 and syndecan 1 is strikingly elevated in the RA synovium, yet their mechanisms of action remain undefined. This study was undertaken to investigate the mechanism of action of IL-34 in RA. METHODS: To characterize the significance of IL-34 in immunometabolism, its mechanism of action was elucidated in joint macrophages, fibroblasts, and T effector cells using RA and preclinical models. RESULTS: Intriguingly, syndecan 1 activated IL-34-induced M-CSFR phosphorylation and reprogrammed RA naive cells into distinctive CD14+CD86+GLUT1+ M34 macrophages that expressed elevated levels of IL-1ß, CXCL8, and CCL2. In murine M34 macrophages, the inflammatory phenotype was accompanied by potentiated glycolytic activity, exhibited by transcriptional up-regulation of GLUT1, c-Myc, and hypoxia-inducible factor 1α (HIF-1α) and amplified pyruvate and l-lactate secretion. Local expression of IL-34 provoked arthritis by expanding the glycolytic F4/80-positive, inducible nitric oxide synthase (iNOS)-positive macrophage population, which in turn attracted fibroblasts and polarized Th1/Th17 cells. The cross-talk between murine M34 macrophages and Th1/Th17 cells broadened the inflammatory and metabolic phenotypes, resulting in the expansion of IL-34 pathogenicity. Consequently, IL-34-instigated joint inflammation was alleviated in RAG-/- mice compared to wild-type mice. Syndecan 1 deficiency attenuated IL-34-induced arthritis by interfering with joint glycolytic M34 macrophage and osteoclast remodeling. Similarly, inhibition of glycolysis by 2-deoxy-d-glucose reversed the joint swelling and metabolic rewiring triggered by IL-34 via HIF-1α and c-Myc induction. CONCLUSION: IL-34 is a novel endogenous factor that remodels hypermetabolic M34 macrophages and facilitates their cross-regulation with T effector cells to advance inflammatory bone destruction in RA.


Assuntos
Artrite Reumatoide/metabolismo , Interleucinas/metabolismo , Macrófagos/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Sindecana-1/metabolismo , Animais , Glicólise/fisiologia , Inflamação/metabolismo , Camundongos , Osteoclastos/metabolismo , Fosforilação , Membrana Sinovial/metabolismo
7.
Angiogenesis ; 21(2): 215-228, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29327326

RESUMO

IL-11 has been detected in inflamed joints; however, its role in the pathogenesis of arthritis is not yet clear. Studies were conducted to characterize the expression and functional significance of IL-11 and IL-11Rα in rheumatoid arthritis (RA). IL-11 levels were elevated in RA synovial fluid (SF) compared to osteoarthritis (OA) SF and plasma from RA, OA and normal individuals (NLs). Morphologic studies established that IL-11 was detected in lining fibroblasts and macrophages in addition to sublining endothelial cells and macrophages at higher levels in RA compared to NL synovial tissues. Since IL-11Rα was exclusively expressed in RA fibroblasts and endothelial cells, macrophages were not involved in IL-11 effector function. Ligation of IL-11 to IL-11Rα strongly provoked fibroblast infiltration into RA joint, while cell proliferation was unaffected by this process. Secretion of IL-8 and VEGF from IL-11 activated RA fibroblasts was responsible for the indirect effect of IL-11 on endothelial cell transmigration and tube formation. Moreover, IL-11 blockade impaired RA SF capacity to elicit endothelial cell transmigration and tube formation. We conclude that IL-11 binding to endothelial IL-11Rα can directly induce RA angiogenesis. In addition, secretion of proangiogenic factors from migrating fibroblasts potentiated by IL-11 can indirectly contribute to RA neovascularization.


Assuntos
Artrite Reumatoide/metabolismo , Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Interleucina-11/metabolismo , Articulações/metabolismo , Neovascularização Patológica/metabolismo , Artrite Reumatoide/patologia , Células Endoteliais/patologia , Feminino , Fibroblastos/patologia , Humanos , Subunidade alfa de Receptor de Interleucina-11/metabolismo , Interleucina-8/metabolismo , Articulações/patologia , Masculino , Neovascularização Patológica/patologia , Migração Transendotelial e Transepitelial , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Autoimmun Rev ; 16(2): 103-113, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27988432

RESUMO

Toll like receptors (TLR)s have a central role in regulating innate immunity and in the last decade studies have begun to reveal their significance in potentiating autoimmune diseases such as rheumatoid arthritis (RA). Earlier investigations have highlighted the importance of TLR2 and TLR4 function in RA pathogenesis. In this review, we discuss the newer data that indicate roles for TLR5 and TLR7 in RA and its preclinical models. We evaluate the pathogenicity of TLRs in RA myeloid cells, synovial tissue fibroblasts, T cells, osteoclast progenitor cells and endothelial cells. These observations establish that ligation of TLRs can transform RA myeloid cells into M1 macrophages and that the inflammatory factors secreted from M1 and RA synovial tissue fibroblasts participate in TH-17 cell development. From the investigations conducted in RA preclinical models, we conclude that TLR-mediated inflammation can result in osteoclastic bone erosion by interconnecting the myeloid and TH-17 cell response to joint vascularization. In light of emerging unique aspects of TLR function, we summarize the novel approaches that are being tested to impair TLR activation in RA patients.


Assuntos
Artrite Reumatoide/imunologia , Macrófagos/imunologia , Células Th17/imunologia , Receptores Toll-Like/imunologia , Humanos , Mediadores da Inflamação , Macrófagos/patologia , Células Th17/patologia
9.
Ann Rheum Dis ; 76(4): 731-739, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27797749

RESUMO

OBJECTIVE: Studies were performed to uncover the significance of obesity in rheumatoid arthritis (RA) and preclinical models. METHODS: Preclinical arthritis models were used to examine the impact of obesity on disease onset and remission. Conditioned media from RA adipose tissues were used to investigate the mechanism contributing to joint neutrophil influx and M1 macrophage differentiation observed in early and remission phases of arthritis. RESULTS: We report that mice fed with high fat diet (HFD) have an earlier onset of collagen-induced arthritis (CIA) compared with mice on regular diet. However, the differences in CIA joint swelling between the two diet groups are lost once disease is established. We found that early arthritis triggered by obesity is due to elevated joint MIP2/interleukin-8 levels detected in CIA as well as in the RA and mouse adipose tissues and the effect of this chemokine on neutrophil recruitment. Although active disease progression is similarly affected in both diet groups, arthritis resolution is accelerated in lean mice while joint inflammation is sustained in obese mice. We document that HFD can prolong toll-like receptor (TLR)4-induced arthritis by increasing joint monocyte migration and further remodelling the recruited cells into M1 macrophages. Consistently, we show that adipose condition media can transform RA and wild-type naïve myeloid cells into M1 macrophages; however, this function is impaired by TLR4 blockade or deficiency. CONCLUSIONS: We conclude that despite established disease being unaffected by obesity, the early and the resolution phases of RA are impacted by obesity through different mechanisms.


Assuntos
Tecido Adiposo/metabolismo , Artrite Reumatoide/metabolismo , Citocinas/metabolismo , Articulações/metabolismo , Obesidade/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/patologia , Movimento Celular , Quimiocina CXCL2/metabolismo , Colágeno , Gorduras na Dieta/administração & dosagem , Modelos Animais de Doenças , Interleucina-8/metabolismo , Articulações/patologia , Lipopolissacarídeos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Neutrófilos/fisiologia , Transdução de Sinais
10.
Autoimmunity ; 49(5): 298-311, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27245356

RESUMO

Earlier, we have shown that GM-CSF derived bone marrow (BM) dendritic cells (G-BMDCs) can expand Foxp3(+) regulatory T-cells (Tregs) through a TCR-independent, but IL-2 dependent mechanism that required OX40L/OX40 interaction. While some reports have shown suppression of autoimmunity upon treatment with an OX40 agonist, others have shown exacerbation of autoimmune disease instead. To better understand the basis for these differing outcomes, we compared the effects of OX40L treatment in 6-week-old pre-diabetic and 12-week-old near diabetic NOD mice. Upon treatment with OX40L, 6-week-old NOD mice remained normoglycemic and showed a significant increase in Tregs in their spleen and lymph nodes, while 12-week-old NOD mice very rapidly developed hyperglycemia and failed to show Treg increase in spleen or LN. Interestingly, OX40L treatment increased Tregs in the thymus of both age groups. However, it induced Foxp3(+)CD103(+)CD38(-) stable-phenotype Tregs in the thymus and reduced the frequency of autoreactive Teff cells in 6-week-old mice; while it induced Foxp3(+)CD103(-)CD38(+) labile-phenotype Tregs in the thymus and increased autoreactive CD4(+) T cells in the periphery of 12-week-old mice. This increase in autoreactive CD4(+) T cells was likely due to either a poor suppressive function or conversion of labile Tregs into Teff cells. Using ex vivo cultures, we found that the reduction in Treg numbers in 12-week-old mice was likely due to IL-2 deficit, and their numbers could be increased upon addition of exogenous IL-2. The observed divergent effects of OX40L treatment were likely due to differences in the ability of 6- and 12-week-old NOD mice to produce IL-2.


Assuntos
Ligante de CD40/metabolismo , Diabetes Mellitus/etiologia , Diabetes Mellitus/metabolismo , Transferência Adotiva , Fatores Etários , Animais , Glicemia , Antígenos CD40/metabolismo , Ligante de CD40/administração & dosagem , Citocinas/genética , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Mediadores da Inflamação/metabolismo , Linfonodos/imunologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos NOD , Ligação Proteica , Baço/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
11.
Arthritis Rheumatol ; 68(5): 1099-110, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26662519

RESUMO

OBJECTIVE: Levels of Toll-like receptor 7 (TLR-7) are elevated in rheumatoid arthritis (RA), but the impact on RA is unknown because the endogenous ligand for TLR-7 has not been identified. The aim of this study was to identify a TLR-7 endogenous ligand and to determine its role in the pathogenesis of RA. METHODS: The presence of an endogenous TLR-7 ligand, microRNA let-7b (miR-let-7b), was examined by real-time polymerase chain reaction (PCR) analysis. Using RA knockdown cells, TLR-7-knockout mice, or antagonist, the specificity of miR-let-7b as a potential ligand for TLR-7 was tested. The mechanism by which ligation of miR-let-7b to TLR-7 promotes disease was investigated in RA myeloid cells by real-time PCR, enzyme-linked immunosorbent assay, and fluorescence-activated cell sorting. We also established the effect of ectopic miR-let-7b expression on arthritic joint inflammation. RESULTS: We found that a TLR-7 endogenous ligand resides mainly in RA synovial fluid macrophages. The GU-rich domain in miR-let-7b was found to be essential for TLR-7 ligation, since miR-147, the positive control for GU, was able to stimulate TLR-7+ myeloid cells, whereas miR-124, the negative, non-GU, control, was not. We demonstrated that miR-let-7b or exosomes containing miR-let-7b could transform the RA and/or mouse naive or antiinflammatory macrophages into inflammatory M1 macrophages via TLR-7 ligation. Consistently, we showed that miR-let-7b provokes arthritis by remodeling naive myeloid cells into M1 macrophages via TLR-7 ligation, since joint swelling and M1 macrophages are absent in TLR-7-deficient mice. CONCLUSION: The results of this study underscore the importance of miR-let-7b ligation to TLR-7 in the joint during the effector phase of RA.


Assuntos
Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Macrófagos/imunologia , Glicoproteínas de Membrana/imunologia , MicroRNAs/imunologia , Células Mieloides/imunologia , Líquido Sinovial/imunologia , Receptor 7 Toll-Like/imunologia , Animais , Western Blotting , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Citocinas/genética , Citocinas/imunologia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Humanos , Glicoproteínas de Membrana/genética , Camundongos Knockout , MicroRNAs/genética , Quinolinas/farmacologia , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptor 7 Toll-Like/antagonistas & inibidores , Receptor 7 Toll-Like/genética
12.
Angiogenesis ; 18(4): 433-48, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26198292

RESUMO

Angiogenesis is the formation of new capillaries from pre-existing vasculature, which plays a critical role in the pathogenesis of several inflammatory autoimmune diseases such as rheumatoid arthritis (RA), spondyloarthropathies, psoriasis, systemic lupus erythematosus, systemic sclerosis, and atherosclerosis. In RA, excessive migration of circulating leukocytes into the inflamed joint necessitates formation of new blood vessels to provide nutrients and oxygen to the hypertrophic joint. The dominance of the pro-angiogenic factors over the endogenous angiostatic mediators triggers angiogenesis. In this review article, we highlight the underlying mechanisms by which cells present in the RA synovial tissue are modulated to secrete pro-angiogenic factors. We focus on the significance of pro-angiogenic factors such as growth factors, hypoxia-inducible factors, cytokines, chemokines, matrix metalloproteinases, and adhesion molecules on RA pathogenesis. As pro-angiogenic factors are primarily produced from RA synovial tissue macrophages and fibroblasts, we emphasize the key role of RA synovial tissue lining layer in maintaining synovitis through neovascularization. Lastly, we summarize the specific approaches utilized to target angiogenesis. We conclude that the formation of new blood vessels plays an indispensable role in RA progression. However, since the function of several pro-angiogenic mediators is cross regulated, discovering novel approaches to target multiple cascades or selecting an upstream cascade that impairs the activity of a number of pro-angiogenic factors may provide a promising strategy for RA therapy.


Assuntos
Artrite Reumatoide/metabolismo , Movimento Celular , Fibroblastos/metabolismo , Macrófagos/metabolismo , Neovascularização Patológica/metabolismo , Membrana Sinovial/metabolismo , Animais , Artrite Reumatoide/patologia , Citocinas/metabolismo , Fibroblastos/patologia , Humanos , Macrófagos/patologia , Neovascularização Patológica/patologia , Membrana Sinovial/patologia
13.
Cytokine ; 75(2): 261-71, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26113402

RESUMO

GM-CSF was originally identified as a colony stimulating factor (CSF) because of its ability to induce granulocyte and macrophage populations from precursor cells. Multiple studies have demonstrated that GM-CSF is also an immune-modulatory cytokine, capable of affecting not only the phenotype of myeloid lineage cells, but also T-cell activation through various myeloid intermediaries. This property has been implicated in the sustenance of several autoimmune diseases like arthritis and multiple sclerosis. In contrast, several studies using animal models have shown that GM-CSF is also capable of suppressing many autoimmune diseases such as Crohn's disease, Type-1 diabetes, Myasthenia gravis and experimental autoimmune thyroiditis. Knockout mouse studies have suggested that the role of GM-CSF in maintaining granulocyte and macrophage populations in the physiological steady state is largely redundant. Instead, its immune-modulatory role plays a significant role in the development or resolution of autoimmune diseases. This is mediated either through the differentiation of precursor cells into specialized non-steady state granulocytes, macrophages and dendritic cells, or through the modulation of the phenotype of mature myeloid cells. Thus, outside of myelopoiesis, GM-CSF has a profound role in regulating the immune response and maintaining immunological tolerance.


Assuntos
Doenças Autoimunes/imunologia , Autoimunidade/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Tolerância Imunológica/imunologia , Células Mieloides/citologia , Animais , Diferenciação Celular/imunologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Granulócitos/citologia , Granulócitos/imunologia , Humanos , Ativação Linfocitária/imunologia , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , Linfócitos T Reguladores/imunologia
14.
J Am Soc Nephrol ; 26(11): 2741-52, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25858967

RESUMO

Podocyte injury and loss mark an early step in the pathogenesis of various glomerular diseases, making these cells excellent targets for therapeutics. However, cell-based high-throughput screening assays for the rational development of podocyte-directed therapeutics are currently lacking. Here, we describe a novel high-content screening-based phenotypic assay that analyzes thousands of podocytes per assay condition in 96-well plates to quantitatively measure dose-dependent changes in multiple cellular features. Our assay consistently produced a Z' value >0.44, making it suitable for compound screening. On screening with >2100 pharmacologically active agents, we identified 24 small molecules that protected podocytes against injury in vitro (1% hit rate). Among the identified hits, we confirmed an ß1-integrin agonist, pyrintegrin, as a podocyte-protective agent. Treatment with pyrintegrin prevented damage-induced decreases in F-actin stress fibers, focal adhesions, and active ß1-integrin levels in cultured cells. In vivo, administration of pyrintegrin protected mice from LPS-induced podocyte foot process effacement and proteinuria. Analysis of the murine glomeruli showed that LPS administration reduced the levels of active ß1 integrin in the podocytes, which was prevented by cotreatment with pyrintegrin. In rats, pyrintegrin reduced peak proteinuria caused by puromycin aminonucleoside-induced nephropathy. Our findings identify pyrintegrin as a potential therapeutic candidate and show the use of podocyte-based screening assays for identifying novel therapeutics for proteinuric kidney diseases.


Assuntos
Hidroxiquinolinas/química , Integrina beta1/metabolismo , Glomérulos Renais/metabolismo , Podócitos/citologia , Sulfonamidas/química , Actinas/metabolismo , Albuminúria/metabolismo , Animais , Movimento Celular , Células Epiteliais/efeitos dos fármacos , Adesões Focais/metabolismo , Ensaios de Triagem em Larga Escala , Nefropatias/metabolismo , Lipopolissacarídeos/química , Camundongos , Microscopia Confocal , Fenótipo , Proteinúria/patologia , Puromicina Aminonucleosídeo/química , Ratos
15.
J Virol ; 88(8): 4353-65, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24501399

RESUMO

UNLABELLED: Severe acute respiratory syndrome coronavirus (SARS-CoV) and Ebola, Hendra, and Nipah viruses are members of different viral families and are known causative agents of fatal viral diseases. These viruses depend on cathepsin L for entry into their target cells. The viral glycoproteins need to be primed by protease cleavage, rendering them active for fusion with the host cell membrane. In this study, we developed a novel high-throughput screening assay based on peptides, derived from the glycoproteins of the aforementioned viruses, which contain the cathepsin L cleavage site. We screened a library of 5,000 small molecules and discovered a small molecule that can inhibit the cathepsin L cleavage of all viral peptides with minimal inhibition of cleavage of a host protein-derived peptide (pro-neuropeptide Y). The small molecule inhibited the entry of all pseudotyped viruses in vitro and the cleavage of SARS-CoV spike glycoprotein in an in vitro cleavage assay. In addition, the Hendra and Nipah virus fusion glycoproteins were not cleaved in the presence of the small molecule in a cell-based cleavage assay. Furthermore, we demonstrate that the small molecule is a mixed inhibitor of cathepsin L. Our broad-spectrum antiviral small molecule appears to be an ideal candidate for future optimization and development into a potent antiviral against SARS-CoV and Ebola, Hendra, and Nipah viruses. IMPORTANCE: We developed a novel high-throughput screening assay to identify small molecules that can prevent cathepsin L cleavage of viral glycoproteins derived from SARS-CoV and Ebola, Hendra, and Nipah viruses that are required for their entry into the host cell. We identified a novel broad-spectrum small molecule that could block cathepsin L-mediated cleavage and thus inhibit the entry of pseudotypes bearing the glycoprotein derived from SARS-CoV or Ebola, Hendra, or Nipah virus. The small molecule can be further optimized and developed into a potent broad-spectrum antiviral drug.


Assuntos
Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Ebolavirus/efeitos dos fármacos , Vírus Hendra/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Vírus Nipah/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Catepsina L/metabolismo , Ebolavirus/metabolismo , Vírus Hendra/metabolismo , Humanos , Vírus Nipah/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Proteínas do Envelope Viral/metabolismo , Viroses/enzimologia , Viroses/virologia
16.
PLoS One ; 7(11): e50366, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23185609

RESUMO

Immune sera from convalescent patients have been shown to be effective in the treatment of patients infected with Severe Acute Respiratory Syndrome Virus (SARS-CoV) making passive immune therapy with human monoclonal antibodies an attractive treatment strategy for SARS. Previously, using Xenomouse (Amgen British Columbia Inc), we produced a panel of neutralizing Human monoclonal antibodies (HmAbs) that could specifically bind to the ectodomain of the SARS-CoV spike (S) glycoprotein. Some of the HmAbs were S1 domain specific, while some were not. In this study, we describe non-S1 binding neutralizing HmAbs that can specifically bind to the conserved S2 domain of the S protein. However, unlike the S1 specific HmAbs, the S2 specific HmAbs can neutralize pseudotyped viruses expressing different S proteins containing receptor binding domain sequences of various clinical isolates. These data indicate that HmAbs which bind to conserved regions of the S protein are more suitable for conferring protection against a wide range of SARS-CoV variants and have implications for generating therapeutic antibodies or subunit vaccines against other enveloped viruses.


Assuntos
Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/farmacologia , Glicoproteínas de Membrana/antagonistas & inibidores , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Proteínas do Envelope Viral/antagonistas & inibidores , Afinidade de Anticorpos , Especificidade de Anticorpos , Sítios de Ligação de Anticorpos , Reações Cruzadas , Mapeamento de Epitopos , Células HEK293 , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Testes de Neutralização , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Síndrome Respiratória Aguda Grave/imunologia , Síndrome Respiratória Aguda Grave/prevenção & controle , Glicoproteína da Espícula de Coronavírus , Transfecção , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA