Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37110876

RESUMO

Catharanthus roseus is a medicinal plant that produces indole alkaloids, which are utilized in anticancer therapy. Vinblastine and vincristine, two commercially important antineoplastic alkaloids, are mostly found in the leaves of Catharanthus roseus. ĸ-carrageenan has been proven as plant growth promoting substance for a number of medicinal and agricultural plants. Considering the importance of ĸ-carrageenan as a promoter of plant growth and phytochemical constituents, especially alkaloids production in Catharanthus roseus, an experiment was carried out to explore the effect of ĸ-carrageenan on the plant growth, phytochemicals content, pigments content, and production of antitumor alkaloids in Catharanthus roseus after planting. Foliar application of ĸ-carrageenan (at 0, 400, 600 and 800 ppm) significantly improved the performance of Catharanthus roseus. Phytochemical analysis involved determining the amount of total phenolics (TP), flavonoids (F), free amino acids (FAA), alkaloids (TAC) and pigments contents by spectrophotometer, minerals by ICP, amino acids, phenolic compounds and alkaloids (Vincamine, Catharanthine, Vincracine (Vincristine), and vinblastine) analysis uses HPLC. The results indicated that all examined ĸ-carrageenan treatments led to a significant (p ≤ 0.05) increase in growth parameters compared to the untreated plants. Phytochemical examination indicates that the spray of ĸ-carrageenan at 800 mg L-1 increased the yield of alkaloids (Vincamine, Catharanthine and Vincracine (Vincristine)) by 41.85 µg/g DW, total phenolic compounds by 3948.6 µg gallic/g FW, the content of flavonoids 951.3 µg quercetin /g FW and carotenoids content 32.97 mg/g FW as compared to the control. An amount of 400 ppm ĸ-carrageenan treatment gave the best contents of FAA, Chl a, Chl b and anthocyanin. The element content of K, Ca, Cu, Zn and Se increased by treatments. Amino acids constituents and phenolics compounds contents were altered by ĸ-carrageenan.


Assuntos
Alcaloides , Catharanthus , Alcaloides de Triptamina e Secologanina , Alcaloides de Vinca , Vincamina , Vimblastina/farmacologia , Vincristina/farmacologia , Carragenina/farmacologia , Catharanthus/química , Vincamina/farmacologia , Alcaloides/farmacologia , Compostos Fitoquímicos/farmacologia , Flavonoides/farmacologia , Aminoácidos/metabolismo , Alcaloides de Triptamina e Secologanina/farmacologia
2.
Plants (Basel) ; 11(12)2022 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35736758

RESUMO

Plant growth regulators can affect the primary and secondary metabolites of various plant species. However, the effect of paclobutrazol (PBZ) on the composition of lavender oil, especially related to the terpenoid pathway, is still unclear in literatures. In this study, the effect of PBZ as a foliar spray (0.200, 400 and 600 ppm) on the vegetative growth, phytochemical content, and both antioxidant and antimicrobial properties of lavender oil were investigated. The results indicated that all examined PBZ treatments led to a significant (p ≤ 0.05) decrease in growth parameters compared to the untreated plants. Meanwhile, the yield of essential oil was significantly decreased by the treatment of PBZ at 200 ppm compared to the control. In contrast, applied-PBZ significantly enhanced the chlorophyll content and displayed a marked change in the composition of the essential oil. This change included an obvious and significant increase in 3-carene, eucalyptol, γ-terpinene, α-pinocarvone, caryophyllene, ß-vetivenene, ß-santalol, ledol, geranyl isovalerate, farnesol, caryophyllene oxide, and phytol percentage. Generally, the highest significant values were achieved by the treatment of 400 ppm compared to the other treatments. Furthermore, this treatment showed the highest free radical scavenging activity against DPPH (1,1-diphenyl-2-picrylhydrazyl) by 13% over the control. Additionally, to determine the antimicrobial activities of the extracted oil, each treatment was examined against two strains of Gram positive bacteria (S. aureus and B. cereus), two strains of Gram negative bacteria (S. enteritidis and E. coli), and two fungal species (C. albicans and A. niger) represent the yeast modal and filamentous fungus, respectively. The findings demonstrated that all examined species were more sensitive to the oil that was extracted from lavender plants, treated with 400 ppm PBZ, compared to the other concentrations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA