Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Front Cell Neurosci ; 16: 896172, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060277

RESUMO

Hepatic encephalopathy (HE) is a neurological disarray manifested as a sequel to chronic and acute liver failure (ALF). A potentially fatal consequence of ALF is brain edema with concomitant astrocyte enlargement. This study aims to outline the role of astrocytes in acute HE and shed light on the most critical mechanisms driving this role. Rats were allocated into two groups. Group 1, the control group, received the vehicle. Group 2, the TAA group, received TAA (300 mg/kg) for 3 days. Serum AST, ALT, and ammonia were determined. Liver and cerebral cortical sections were processed for hematoxylin and eosin staining. Additionally, mRNA expression and immunohistochemical staining of cortical GFAP, TNFα, Kir4.1, and AQP4 were performed. Cortical sections from the TAA group demonstrated neuropil vacuolation and astrocytes enlargement with focal gliosis. GFAP, TNFα, and AQP4 revealed increased mRNA expression, positive immunoreactivity, and a positive correlation to brain water content. In contrast, Kir 4.1 showed decreased mRNA expression and immunoreactivity and a negative correlation to brain water content. In conclusion, our findings revealed altered levels of TNFα, Kir 4.1, GFAP, and AQP4 in HE-associated brain edema. A more significant dysregulation of Kir 4.1 and TNFα was observed compared to AQP4 and GFAP.

2.
Biomed Pharmacother ; 154: 113554, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35987163

RESUMO

BACKGROUND: Diabetic retinopathy (DR) is a serious microvascular complication of diabetes mellitus. Mesenchymal stem cells are currently studied as therapeutic strategy for management of DR. Exosomes, considered as a promising cell-free therapy option, display biological functions similar to those of their parent cells. In retinal development, Wnt/b-catenin signaling provides key cues for functional progression. The present study aimed to evaluate the potential efficacy of bone marrow-derived mesenchymal stem cell-derived exosomes (BM-MSCs-Ex) in diabetes-induced retinal injury via modulation of the Wnt/ b-catenin signaling pathway. METHODS: Eighty-one rats were allocated into 6 groups (control, DR, DR + DKK1, DR + exosomes, DR + Wnt3a and DR + exosomes+Wnt3a). Evaluation of each group was via histopathological examination, assessment of gene and/or protein expression concerned with oxidative stress (SOD1, SOD2, Nox2, Nox4, iNOS), inflammation (TNF-α, ICAM-1, NF-κB) and angiogenesis (VEGF, VE-cadherin). RESULTS: Results demonstrated that exosomes blocked the wnt/b-catenin pathway in diabetic retina concomitant with significant reduction of features of DR as shown by downregulation of retinal oxidants, upregulation of antioxidant enzymes, suppression of retinal inflammatory and angiogenic markers. These results were further confirmed by histopathological results, fundus examination and optical coherence tomography. Additionally, exosomes ameliorative effects abrogated wnt3a-triggered retinal injury in DR. CONCLUSION: Collectively, these data demonstrated that exosomes ameliorated diabetes-induced retinal injury via suppressing Wnt/ b-catenin signaling with subsequent reduction of oxidative stress, inflammation and angiogenesis.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Exossomos , Células-Tronco Mesenquimais , Animais , Cateninas/metabolismo , Diabetes Mellitus/metabolismo , Retinopatia Diabética/metabolismo , Exossomos/metabolismo , Inflamação/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neovascularização Patológica/metabolismo , Ratos , Via de Sinalização Wnt , beta Catenina/metabolismo
3.
Environ Toxicol Pharmacol ; 95: 103943, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35934220

RESUMO

Colorectal cancer (CRC) is a common malignancy with high mortality and poor prognosis. Diacerein (DIA) is an anti-inflammatory used for treatment of osteoarthritis. We delineated some underlying molecular mechanisms of DIA's anti-carcinogenic effect in CRC using in vivo and in vitro models. Human Caco-2 cells were treated with DIA followed by MTT and Annexin V assays and CRC was experimentally induced using 1,2-dimethylhydrazine. DIA (50 mg/kg/day, orally) was administrated for 8 weeks. The MTT assay confirmed cytotoxic effect of DIA in vitro and Annexin V confirmed its apoptotic effect. DIA resulted in regression of tumour lesions with reduced colonic TLR4, NF-κB and TNF-α protein levels and down-regulated VEGF expression, confirming anti-angiogenic impact. DIA triggered caspase-3 expression and regulated Wnt/ß-Catenin pathway, by apparently interrupting the IL-6/STAT3/ lncRNA HOTAIR axis. In conclusion, DIA disrupted IL-6/STAT3/ lncRNA HOTAIR axis which could offer an effective therapeutic strategy for the management of CRC.


Assuntos
Anticarcinógenos , RNA Longo não Codificante , 1,2-Dimetilidrazina/metabolismo , 1,2-Dimetilidrazina/farmacologia , Anexina A5 , Antraquinonas , Anti-Inflamatórios/farmacologia , Anticarcinógenos/farmacologia , Células CACO-2 , Carcinogênese/metabolismo , Caspase 3/metabolismo , Proliferação de Células , Colo , Humanos , Interleucina-6/metabolismo , NF-kappa B/metabolismo , RNA Longo não Codificante/genética , Fator de Transcrição STAT3 , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo
4.
Int J Mol Sci ; 23(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35682646

RESUMO

Trastuzumab (Trz) is a humanized monoclonal antibody targeting epidermal growth factor receptor 2 (HER2; ErbB2). The combined administration of Trz and doxorubicin (DOX) has shown potent anti-cancer efficacy; however, this regimen may be accompanied by severe cardiac toxicity. Mesenchymal stem cells (MSCs)-derived exosomes are nanosized vesicles that play a crucial role in cell-cell communication and have shown efficacy in the treatment of various diseases. In this study, we aim to investigate the cardioprotective effects of MSCs-derived exosomes in a DOX/Trz- mediated cardiotoxicity model, and the possible mechanisms underlying these effects are elucidated. Forty-nine male rats were randomly assigned into four groups: Group I (control); Group II (Dox/Trz); Group III (protective group); and Group IV (curative group). Cardiac hemodynamic parameters, serum markers of cardiac injury, oxidative stress indices, and cardiac histopathology were investigated. Further, transcript profile of specific cardiac tissue injury markers, apoptotic markers, and fibrotic markers were analyzed using qRT-PCR, while the protein expressions of pAkt/Akt, pERK/ERK, pJNK/JNK, pJNK/JNK, and pSTAT3/STAT3 were evaluated by ELISA. Additionally, cardiac mirR-21 and miR-26a were assessed. A combined administration of DOX/Trz disrupted redox and Ca2+ homeostasis in cardiac tissue induced myocardial fibrosis and myofibril loss and triggered cardiac DNA damage and apoptosis. This cardiotoxicity was accompanied by decreased NRG-1 mRNA expression, HER2 protein expression, and suppressed AKT and ERK phosphorylation, while triggering JNK phosphorylation. Histological and ultra-structural examination of cardiac specimens revealed features typical of cardiac tissue injury. Moreover, a significant decline in cardiac function was observed through biochemical testing of serum cardiac markers and echocardiography. In contrast, the intraperitoneal administration of MSCs-derived exosomes alleviated cardiac injury in both protective and curative protocols; however, superior effects were observed in the protective protocol. The results of the current study indicate the ability of MSCs-derived exosomes to protect from and attenuate DOX/Trz-induced cardiotoxicity. The NRG-1/HER2, MAPK, PI3K/AKT, PJNK/JNK, and PSTAT/STAT signaling pathways play roles in mediating these effects.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Animais , Apoptose , Cardiotoxicidade/metabolismo , Doxorrubicina/farmacologia , Receptores ErbB/metabolismo , Exossomos/metabolismo , Fibrose , Masculino , Células-Tronco Mesenquimais/metabolismo , Miócitos Cardíacos/metabolismo , Neuregulina-1/metabolismo , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais , Trastuzumab
5.
Front Endocrinol (Lausanne) ; 13: 862394, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370937

RESUMO

The current study aims to assess the protective effects of dapagliflozin (Dapa; a sodium-glucose cotransporter-2 inhibitor) and/or liraglutide (Lira; a glucagon-like peptide 1 agonist) in an experimental model of diabetic cardiomyopathy (DCM). A single dose of streptozotocin (STZ) was administrated to male Sprague-Dawley rats by intraperitoneal injection at a dose of 50 mg/kg to induce diabetes mellitus (DM). Dapa (1 mg/kg, orally), Lira (0.4 mg/kg, s.c.), and Dapa-Lira combination were administrated for 8 weeks once-daily. Blood samples were evaluated for glucose level and biochemical markers of cardiac functions. Cardiac tissue was dissected and assessed for redox homeostasis (malondialdehyde (MDA), glutathione (GSH), and catalase (CAT)), pro-inflammatory mediators (NF-κB and tumor necrosis factor-α (TNF-α)), and apoptotic effectors (caspase-3). Moreover, the effect of treatments on the cardiac cellular structure was studied. Dapa and/or Lira administration resulted in significant improvement of biochemical indices of cardiac function. Additionally, all treatment groups demonstrated restoration of oxidant/antioxidant balance. Moreover, inflammation and apoptosis key elements were markedly downregulated in cardiac tissue. Also, histological studies demonstrated attenuation of diabetes-induced cardiac tissue injury. Interestingly, Dapa-Lira combination treatment produced a more favorable protective effect as compared to a single treatment. These data demonstrated that Dapa, Lira, and their combination therapy could be useful in protection against DM-accompanied cardiac tissue injury, shedding the light on their possible utilization as adjuvant therapy for the management of DM patients.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Apoptose , Compostos Benzidrílicos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/etiologia , Glucosídeos , Humanos , Inflamação/complicações , Inflamação/tratamento farmacológico , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Masculino , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico
6.
Int. j. morphol ; 40(5): 1300-1307, 2022. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1405267

RESUMO

SUMMARY: Sodium-glucose cotransporter 2 inhibitors (SGLT2i) represent a unique class of glucose-declining renal-targeted drugs. The SGLT2i Canagliflozin (CANA) is an anti-hyperglycemic drug that reduces various cardiovascular and renal outcomes in patients with type 2 diabetes mellitus. This study aimed to explore the potential effects of CANA on the isolated healthy adult rat hearts to show if CANA has positive inotropic or cardiac depressant effects via analyzing the amplitude and frequency of cardiac contractions. In isolated normal adult rat hearts, the effects of CANA on cardiac contractility were examined. In a dose-response curve, CANA led to a significant cardiac depressant effect in a dose-dependent manner. This cardiac depressant effect of CANA (10-6 M) was not prevented by atropine. However, this cardiac depressant effect was partially antagonized by both Isoproterenol (10-5 M) and Calcium chloride (10-6 M), suggesting beta-adrenoceptor and calcium channel blocking actions. In addition, the cardiac depressant effect of CANA (10-6 M) was mitigated in part by Nitric oxide synthase inhibitor, L-NAME, suggesting that its action probably depends to some extent on the accumulation of nitric oxide, which decreases the rise of intracellular Calcium. Data from this study demonstrate that CANA has a significant cardiac relaxant effect in isolated hearts of healthy adult rats by different possible mechanisms. This inhibitory effect on cardiac contractility may help improve the diastolic ventricular filling providing a therapeutic potential to help the other cardioprotective mechanisms of CANA in the prevention and treatment of heart failure.


RESUMEN: Los inhibidores del cotransportador de sodio- glucosa 2 (SGLT2i) representan una clase única de fármacos dirigidos a los riñones que disminuyen la glucosa. El SGLT2i Canagliflozin (CANA) es un fármaco antihiperglucémico que reduce varios resultados cardiovasculares y renales en pacientes con diabetes mellitus tipo 2. Este estudio tuvo como objetivo explorar los efectos potenciales de CANA en corazones aislados de ratas adultas sanas para indicar si CANA tiene efectos inotrópicos o depresores cardíacos positivos mediante el análisis de la amplitud y la frecuencia de las contracciones cardíacas. En corazones aislados de ratas adultas normales, se examinaron los efectos de CANA sobre la contractilidad cardíaca. En una curva de dosis-respuesta, CANA condujo a un efecto depresor cardíaco significativo de manera dependiente de la dosis. Este efecto depresor cardíaco de CANA (10-6 M) no fue impedido por la atropina. Sin embargo, este efecto depresor cardíaco fue parcialmente antagonizado tanto por el isoproterenol (10-5 M) como por el cloruro de calcio (10-6 M), lo que sugiere acciones bloqueadoras de los receptores beta adrenérgicos y de los canales de calcio. Además, el efecto depresor cardíaco de CANA (10-6 M) fue mitigado en parte por el inhibidor de la sintasa de óxido nítrico, L-NAME, lo que sugiere que su acción probablemente depende en cierta medida de la acumulación de óxido nítrico, lo que disminuye el aumento de calcio intracelular. Los datos de este estudio demuestran que CANA tiene un efecto relajante cardíaco significativo en corazones aislados de ratas adultas sanas por diferentes mecanismos posibles. Este efecto inhibitorio sobre la contractilidad cardíaca puede ayudar a mejorar el llenado ventricular diastólico proporcionando un potencial terapéutico para ayudar a los otros mecanismos cardioprotectores de CANA en la prevención y tratamiento de la insuficiencia cardíaca.


Assuntos
Animais , Masculino , Ratos , Canagliflozina/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Coração/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Ratos Wistar , NG-Nitroarginina Metil Éster
7.
Molecules ; 26(24)2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34946766

RESUMO

The development of the field of nanotechnology has revolutionized various aspects in the fields of modern sciences. Nano-medicine is one of the primary fields for the application of nanotechnology techniques. The current study sheds light on the reno-protective impacts of gold nano-particles; nanogold (AuNPs) against 5-flurouracil (5-FU)-induced renal toxicity. Indeed, the use of 5-FU has been associated with kidney injury which greatly curbs its therapeutic application. In the current study, 5-FU injection was associated with a significant escalation in the indices of renal injury, i.e., creatinine and urea. Alongside this, histopathological and ultra-histopathological changes confirmed the onset of renal injury. Both gene and/or protein expression of nuclear factor erythroid 2-related factor 2 (Nrf-2) and downstream antioxidant enzymes revealed consistent paralleled anomalies. AuNPs administration induced a significant renal protection on functional, biochemical, and structural levels. Renal expression of the major sensor of the cellular oxidative status Nrf-2 escalated with a paralleled reduction in the renal expression of the other contributor to this axis, known as Kelch-like ECH-associated protein 1 (Keap-1). On the level of the effector downstream targets, heme oxygenase 1 (HO-1) and gamma-glutamylcysteine synthetase (γ-GCS) AuNPs significantly restored their gene and protein expression. Additionally, combination of AuNPs with 5-FU showed better cytotoxic effect on MCF-7 cells compared to monotreatments. Thus, it can be inferred that AuNPs conferred reno-protective impact against 5-FU with an evident modulatory impact on Nrf-2/Keap-1 and its downstream effectors, HO-1 and γ-GCS, suggesting its potential use in 5-FU regimens to improve its therapeutic outcomes and minimize its underlying nephrotoxicity.


Assuntos
Fluoruracila/antagonistas & inibidores , Ouro/farmacologia , Rim/efeitos dos fármacos , Nanopartículas Metálicas/química , Animais , Modelos Animais de Doenças , Fluoruracila/administração & dosagem , Fluoruracila/farmacologia , Ouro/administração & dosagem , Ouro/química , Heme Oxigenase (Desciclizante)/antagonistas & inibidores , Heme Oxigenase (Desciclizante)/metabolismo , Injeções Intraperitoneais , Rim/lesões , Rim/patologia , Nanopartículas Metálicas/administração & dosagem , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/metabolismo , Nanotecnologia , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , gama-Glutamilciclotransferase/antagonistas & inibidores , gama-Glutamilciclotransferase/metabolismo
8.
Cells ; 10(11)2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34831042

RESUMO

BACKGROUND: Liver transplantation remains the only viable therapy for liver failure but has a severely restricted utility. Here, we aimed to decellularize rat livers to form acellular 3D bio-scaffolds suitable for seeding with induced pluripotent cells (iPSCs) as a tool to investigate the role of Wnt/ß-catenin signaling in liver development and generation. METHODS: Dissected rat livers were randomly divided into three groups: I (control); II (decellularized scaffolds) and III (recellularized scaffolds). Liver decellularization was established via an adapted perfusion procedure and assessed through the measurement of extracellular matrix (ECM) proteins and DNA content. Liver recellularization was assessed through histological examination and measurement of transcript levels of Wnt/ß-catenin pathway, hepatogenesis, liver-specific microRNAs and growth factors essential for liver development. Adult rat liver decellularization was confirmed by the maintenance of ECM proteins and persistence of growth factors essential for liver regeneration. RESULTS: iPSCs seeded rat decellularized livers displayed upregulated transcript expression of Wnt/ß-catenin pathway-related, growth factors, and liver specification genes. Further, recellularized livers displayed restored liver-specific functions including albumin secretion and urea synthesis. CONCLUSION: This establishes proof-of-principle for the generation of three-dimensional liver organ scaffolds as grafts and functional re-establishment.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Fígado/citologia , Alicerces Teciduais/química , Regulação para Cima , Via de Sinalização Wnt , Albuminas/metabolismo , Animais , Diferenciação Celular , Hepatócitos/citologia , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Masculino , Ratos , Ureia/metabolismo , alfa-Fetoproteínas/metabolismo , beta Catenina/metabolismo
9.
Int Immunopharmacol ; 100: 108082, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34450401

RESUMO

Benign prostatic hypertrophy (BPH) is a serious medical condition among elderly male population. BPH pathogenesis has been linked to inflammation, cellular proliferation, oxidative stress and apoptosis. Diacerein (DIA) is a FDA approved anthraquinone drug that is used to treat joint diseases such as osteoarthritis. DIA has been studied for its potent anti-inflammatory and antioxidant effects, yet its role in managing BPH has not been investigated. In this study, DIA administration for two weeks at 50 mg/kg in testosterone-induced BPH rats significantly reduced prostate weight and index. Moreover, prostatic biochemical and structural features in BPH rats were significantly improved upon DIA treatment. Mechanistically, DIA treatment associated prostatic anti-hyperplastic effects were linked to downregulation of Nrf-2/HO-1 axis, downregulation of inflammatory TNF-a, IL-1ß, IL-6, downregulation of the cell proliferative marker PCNA and upregulation of caspase-3 levels. In addition, DIA treatment upregulated prostatic antioxidant GSH, the enzymatic SOD and CAT activities and reduced prostatic lipid peroxidation levels. Altogether, the present study provides evidence that DIA treatment might limit BPH progression via its potent anti-oxidant, anti-inflammatory, anti-proliferative and apoptosis inducing effects.


Assuntos
Antraquinonas/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Hiperplasia Prostática/tratamento farmacológico , Prostatite/tratamento farmacológico , Animais , Antraquinonas/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/imunologia , Próstata/efeitos dos fármacos , Próstata/imunologia , Próstata/patologia , Hiperplasia Prostática/induzido quimicamente , Hiperplasia Prostática/imunologia , Hiperplasia Prostática/patologia , Prostatite/imunologia , Prostatite/patologia , Ratos , Testosterona/administração & dosagem , Testosterona/toxicidade
10.
Stem Cell Res Ther ; 12(1): 392, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34256844

RESUMO

BACKGROUND: Diabetic foot ulceration is a serious chronic complication of diabetes mellitus characterized by high disability, mortality, and morbidity. Platelet-rich plasma (PRP) has been widely used for diabetic wound healing due to its high content of growth factors. However, its application is limited due to the rapid degradation of growth factors. The present study aimed to evaluate the efficacy of combined adipose-derived mesenchymal stem cells (ADSCs) and PRP therapy in promoting diabetic wound healing in relation to the Notch signaling pathway. METHODS: Albino rats were allocated into 6 groups [control (unwounded), sham (wounded but non-diabetic), diabetic, PRP-treated, ADSC-treated, and PRP+ADSCs-treated groups]. The effect of individual and combined therapy was evaluated by assessing wound closure rate, epidermal thickness, dermal collagen, and angiogenesis. Moreover, gene and protein expression of key elements of the Notch signaling pathway (Notch1, Delta-like canonical Notch ligand 4 (DLL4), Hairy Enhancer of Split-1 (Hes1), Hey1, Jagged-1), gene expression of angiogenic marker (vascular endothelial growth factor and stromal cell-derived factor 1) and epidermal stem cells (EPSCs) related gene (ß1 Integrin) were assessed. RESULTS: Our data showed better wound healing of PRP+ADSCs compared to their individual use after 7 and 14 days as the combined therapy caused reepithelialization and granulation tissue formation with a marked increase in area percentage of collagen, epidermal thickness, and angiogenesis. Moreover, Notch signaling was significantly downregulated, and EPSC proliferation and recruitment were enhanced compared to other treated groups and diabetic groups. CONCLUSIONS: These data demonstrated that PRP and ADSCs combined therapy significantly accelerated healing of diabetic wounds induced experimentally in rats via modulating the Notch pathway, promoting angiogenesis and EPSC proliferation.


Assuntos
Diabetes Mellitus Experimental , Células-Tronco Mesenquimais , Plasma Rico em Plaquetas , Animais , Diabetes Mellitus Experimental/terapia , Ratos , Fator A de Crescimento do Endotélio Vascular , Cicatrização
11.
Biomed Pharmacother ; 142: 111666, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34215478

RESUMO

Diabetic nephropathy (DN) is a diabetic complication characterized by disruption of renal microvasculature, reactive oxygen species accumulation and increased inflammation, all of which contribute to renal injury. Phenethyl isothiocyanate (PEITC) is a naturally occurring isothiocyanate well known for its antioxidant and anti-inflammatory effects, yet its reno-preventive effects against DN has not been investigated. The current study looked into the in vivo reno-protective effects of PEITC in STZ-induced DN in rats. PEITC (3, 10 and 30 mg/kg) was administered orally for 8 weeks post DM establishment. PEITC treatment significantly improved kidney and liver functions, renal histopathological features, tissue fibrosis, macrophage infiltration and blood glucose levels compared to DN control. Mechanistically, PEITC treatment alleviated DN-induced renal damage via modulating glycation and oxidative stresses and inflammatory response. As such, PEITC activated glyoxalase 1 (GLO1) that induced a retraction in renal tissue expression of advanced glycation end products (AGEs) and its receptor (RAGE). PEITC activated nuclear erythroid 2-related factor 2 (Nrf2) and increased expression of its downstream targets, hemeoxygenase-1 (HO-1) and gamma glutamate-cysteine (γ-GCS). Additionally, PEITC treatment decreased the expression of Nrf2 repressor protein, keap1. The anti-inflammatory effect of PEITC was driven, at least in part, via reducing the NLRP3 inflammasome activation as indicated by down regulation of NLRP3, TXNIP, capsase-1 and IL-1ß, TNF-alpha and IL-6. In conclusion; PEITC attenuated DN progression in a dose dependent manner mainly via interruption of AGE/RAGE and NLPR3/TXNIP/NrF2 crosstalk.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Produtos Finais de Glicação Avançada/metabolismo , Inflamação/metabolismo , Isotiocianatos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Administração Oral , Animais , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Fibrose/tratamento farmacológico , Fibrose/metabolismo , Glutamato-Cisteína Ligase/metabolismo , Produtos Finais de Glicação Avançada/genética , Heme Oxigenase (Desciclizante)/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Isotiocianatos/administração & dosagem , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Lactoilglutationa Liase/metabolismo , Fígado/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Substâncias Protetoras/administração & dosagem , Ratos Sprague-Dawley , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estreptozocina , Regulação para Cima
12.
Bioorg Chem ; 114: 105100, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34246972

RESUMO

Cisplatin (CP) is an effective chemotherapeutic agent for treatment of various types of cancer, however efforts are needed to reduce its toxic side effect. Previous studies revealed promising effect of peptides in decreasing CP induced nephrotoxicity. Herein, novel Met-based peptidomimetics were synthesized using N-acylbenzotriazole as acylating agent in high yield. Evaluation of renoprotective effect of the synthesized targets on CP treated kidney cell line (LLC-PK1) revealed that pretreatment with 1/3 IC50 of targets II, IIIa-g attenuated CP induced cell death where the IC50 of CP was raised from 3.28 µM to 9.25-41.1 µM. The most potent compounds IIIg, II and IIIb exhibited antioxidative stress in CP-treated LLC-PK1 cells as confirmed by raising GSH/GSSG ratio and SOD concentration as well as decreasing ROS and MDA. Additionally, in vivo experiments using Sprague Dawley rats showed renoprotective effect of IIIg against CP-induced nephrotoxicity as evidenced by improved results of renal function tests and attenuated CP-induced renal structural injury. Moreover, antioxidant activity of IIIg was demonstrated via its ability to reduce renal MDA level and up-regulate renal antioxidant element GSH level. Further, immunohistochemistry of renal specimens showed the ability of IIIg to restore CP-induced suppression of Nrf2. Interestingly, in vivo and in vitro studies demonstrated that IIIg had no effect on CP antiproliferative activity. An assessment of the ADMET properties revealed that targets IIIg, II and IIIb showed good drug-likeness in terms of their physicochemical, pharmacokinetic properties. The findings presented here showcase that IIIg is a promising renoprotective candidate with antioxidative stress potential.


Assuntos
Desenho de Fármacos , Metionina/farmacologia , Peptidomiméticos/farmacologia , Substâncias Protetoras/farmacologia , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Cisplatino/antagonistas & inibidores , Cisplatino/farmacologia , Relação Dose-Resposta a Droga , Humanos , Metionina/síntese química , Metionina/química , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Peptidomiméticos/síntese química , Peptidomiméticos/química , Substâncias Protetoras/síntese química , Substâncias Protetoras/química , Relação Estrutura-Atividade
13.
Hum Exp Toxicol ; 40(4): 707-721, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33030083

RESUMO

Despite wide application of sodium nitrite (SN) as food additive, it exhibits considerable side effects on various body organs at high dose or chronic exposure. The aim of this study was to test whether Glycyrrhizic acid (GA) could ameliorate SN-induced toxicity in lung and submandibular salivary gland (SMG). A sample size of 30 adult male albino rats was randomly allocated into 3 groups. Group 1 served as control group. Rats were treated orally with 80 mg/kg of SN in group 2 or SN preceded by (15 mg/kg) GA in group 3. Lung & SMG tissues were used for oxidative stress assessment, examination of histopathological changes, fibrosis (MTC, TGF-ß and α-SMA) and inflammation (TNF-α, IL-1ß and CD-68). Concurrent administration of GA ameliorated pulmonary and salivary SN-induced toxicity via restoring the antioxidant defense mechanisms with reduction of MDA levels. GA reduced the key regulators of fibrosis TGF-ß and α-SMA and collagen deposition. In addition to reduction of inflammatory cytokine (TNF-α, IL-1ß) and macrophages recruitments, GA amended both pulmonary and salivary morphological changes. The present study proposed GA as a promising natural herb with antioxidant, anti-inflammatory and antifibrotic effects against pulmonary and salivary SN-induced toxicity.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Ácido Glicirrízico/uso terapêutico , Pulmão/efeitos dos fármacos , Glândulas Salivares/efeitos dos fármacos , Nitrito de Sódio/toxicidade , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Fibrose , Glutationa/metabolismo , Ácido Glicirrízico/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Glândulas Salivares/metabolismo , Glândulas Salivares/patologia
14.
Int J Mol Sci ; 21(20)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076548

RESUMO

The natural flavonoid chrysin possesses antiproliferative activity against various types of cancers, including hepatocellular carcinoma (HCC), which is a common malignancy. However, the exact mechanism of chrysin antiproliferative activity remains unclear. This research was executed to explore the impact of chrysin on glypican-3 (GPC3)/sulfatase-2 (SULF2) axis and lncRNA-AF085935 expression in HCC using HepG2 cells. Cisplatin (20, 50, 100 µg/mL), chrysin (15, 30, and 60 µg/mL) and the combination of 50 µg/mL cisplatin with different concentrations of chrysin were applied for 24/48 h. Cell viability was determined by MTT assay. Protein levels of GPC3 and SULF2 were measured by ELISA at 24/48 h. GPC3 immunoreactivity was detected by immunocytochemistry. Moreover, GPC3 and SULF2 mRNA expressions in addition to lncRNA-AF085935 expression were assessed by qPCR at 48 h. The GPC3 protein, immunostaining and mRNA levels, SULF2 protein and mRNA levels, as well as lncRNA-AF085935 expression, were decreased significantly with cisplatin and chrysin alone when compared with the control untreated HepG2 cells. However, the combination treatment exhibited a better chemopreventive effect in a dose- and time-dependent manner. This study demonstrated, for the first time, the antiproliferative activity of chrysin against HCC through the suppression of the GPC3/SULF2 axis along with the downregulation of lncRNA-AF085935 expression. Synergistic effect of chrysin with cisplatin could potentiate their antiproliferative action in a dose- and time-dependent manner.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/metabolismo , Flavonoides/farmacologia , Neoplasias Hepáticas/metabolismo , RNA Longo não Codificante/metabolismo , Proliferação de Células/efeitos dos fármacos , Glipicanas/genética , Glipicanas/metabolismo , Células Hep G2 , Humanos , RNA Longo não Codificante/genética , Sulfatases/genética , Sulfatases/metabolismo
15.
Environ Toxicol Pharmacol ; 80: 103494, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32942000

RESUMO

The results of the current study investigated the chemo-preventive effect of crocin against hepatocarcinogenesis in rats with particular focus on the evaluation of the modulatory impact of crocin on apoptotic and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways. Thioacetamide (TAA) (200 mg/kg, I.P.) was used for experimental induction of hepatocarcinogenesis in rats. Crocin administration significantly attenuated TAA-induced cancerous lesions with concomitant attenuation of impaired liver functions. This was associated with significant enhancement in hepatic Nrf2 and heme oxygenase-1 (HO-1) expression with parallel suppression in Keap-1 expression. Inline, crocin induced a significant improvement in hepatic oxidative status with enhanced antioxidant batteries. Crocin administration significantly suppressed the hepatic content of c-Jun N-terminal kinase (c-JNK) with significant upregulation in TNF-related apoptosis-inducing ligand (TRAIL) and caspase-8 protein expression as well as p53 gene expression; biomarkers of apoptosis. Moreover, hepatic expression of the apoptotic BAX significantly increased and the anti-apoptotic Bcl-2 significantly decreased in the liver specimen; biomarkers of intrinsic apoptosis. In conclusion; crocin attenuates experimentally induced hepato-carcinogenesis via modulation of oxidative/apoptotic signaling. Namely, crocin induced hepatic expression of Nrf2 with downstream modulation of endogenous HO-1 and Keap-1 signaling with modulation of various key players of apoptosis including; c-JNK, p53, TRAIL, caspase-8, BAX, and Bcl-2.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carotenoides/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Substâncias Protetoras/uso terapêutico , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinogênese/induzido quimicamente , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carotenoides/farmacologia , Heme Oxigenase (Desciclizante)/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Substâncias Protetoras/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Tioacetamida
16.
Life Sci ; 262: 118467, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32961236

RESUMO

Donepezil (DNPZ) has shown neuroprotective effect in many disorders. The current study tested the putative retinoprotection provided by donepezil in mouse diabetic retinopathy. Swiss albino mice were allocated to, 1] saline control, 2] diabetic, 3&4] diabetic+DNPZ (1 or 4 mg/kg). After induction of diabetes, mice were maintained for 8 weeks then DNPZ therapy was launched for 28 days. Retinas were isolated and used for histopathology and immunohistochemistry for caspase 3 and the anti-apoptotic protein, B-cell lymphoma 2 (BCl2). Retinas were examined for glutamate, acetylcholine and oxidation markers. Western blot analysis measured inflammatory cytokines, N-methyl-d-aspartate receptors (NMDARs), phosphorylated and total phosphatidylinositol-3 kinase and mTOR, BCl2 and cleaved caspase 3. Significant histopathological changes and decreased thickness were found in diabetic retinas (125.52 ± 2.85 vs. 157.15 ± 7.55 in the saline group). In addition, retinal glutamate (2.39-fold), inflammatory cytokines and NMDARs proteins (4.9-fold) were higher in the diabetic retinas. Western blot analysis revealed low ratio of phosphorylated/total PI3K (0.21 ± 0.043 vs. 1 ± 0.005) and mTOR (0.18 ± 0.04 vs. 1 ± 0.005), low BCl2 (0.28 ± 0.06 vs. 1 ± 0.005) and upregulated cleaved caspase 3 (5.18 ± 1.27 vs. 1 ± 0.05 in the saline group) versus the saline control. DNPZ ameliorated the histopathologic manifestations and to prevent the decrease in retinal thickness. DNPZ (4 mg/kg) improved phosphorylation of PI3K (0.76 ± 0.12 vs. 0.21 ± 0.04) and mTOR (0.59 ± 0.09 vs. 0.18 ± 0.04) and increased BCl2 (0.75 ± 0.08 vs. 0.28 ± 0.06) versus the diabetic control group. This study explained the retinoprotective effect of DNPZ in mouse diabetic retinopathy and highlighted that mitigation of excitotoxicity, improving phosphorylation of PI3K/mTOR and increasing BCl2 contribute to this effect.


Assuntos
Inibidores da Colinesterase/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Retinopatia Diabética/prevenção & controle , Donepezila/farmacologia , Animais , Diabetes Mellitus Experimental/complicações , Masculino , Camundongos , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Serina-Treonina Quinases TOR/metabolismo
17.
Pathol Res Pract ; 216(10): 153139, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32853959

RESUMO

The prevalence of breast cancer is remarkably increasing worldwide. Therefore, introduction of new approaches along with improvement of the existing ones in cancer treatment field is of great demand. The present study was designated to investigate the anti-proliferative role of Diallyl trisulfide (DATS) alone or in combination with Doxorubicin (Doxo) in Ehrlich solid carcinoma (ESC)-bearing mice. ESC was induced in female albino mice as an experimental model for breast cancer. The anti-tumorigenic effect of DATS was mediated by suppression of Notch signaling proteins (Notch 1, JAG 1 and HES 1), attenuation of tumor inflammation (NFκB, TNF-α, IL-6, IL-1ß) and proliferation (cyclin D1, Ki67) and enhancement of apoptosis (caspase 3, p53). DATS and Doxo mono-treatments displayed opposing effect regarding expression of Notch signaling proteins and cyclin D1 gene expression. However, DATS and Doxo co-treatment markedly decreased tumor volume and weight, increased animals' survival rate, and attenuated Doxo-induced tumor inflammation. In parallel, microscopic investigation displayed that ESC tumor tissues from animals treated with DATS and/or DOX showed shrinkage of tumor lesions and wider zones of apoptosis. In conclusion, DATS acts via multiple molecular targets to elicit anti-proliferative activity. Combination of DATS with Doxo -which exhibit different mechanisms of action- might be a potential novel strategy to augment Doxo-antitumor effect.


Assuntos
Compostos Alílicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Sulfetos/farmacologia , Animais , Neoplasias da Mama/patologia , Carcinoma de Ehrlich/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos
18.
J Pharm Pharmacol ; 72(11): 1546-1555, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32746497

RESUMO

OBJECTIVES: To investigate the protective effect of vanillin in cisplatin (CP)-induced nephrotoxicity in rats and elucidate the role of nrf-2 and its downstream antioxidant molecules. METHODS: Rats received vanillin (100 mg/kg orally) for 10 constitutive days and CP (7.5 mg/kg, once, ip) on day 6 of vanillin administration. KEY FINDINGS: Cisplatin suppressed body weight gain, increased serum urea and creatinine and renal malondialdehyde and nitric oxide while decreased renal total antioxidant capacity. Up-regulation of NADPH oxidase-4 (NOX-4) was marked in renal tissue of CP-treated rats along with down-regulation of the antioxidant genes (nuclear factor erythroid 2-related factor2 (NRF2) and haem oxygenase-1(HO-1)). Increased tumour necrosis factor-α and decreased interleukin-10 with increased myeloperoxidase activity were apparent in renal tissue of CP-treated rats along with marked tubular injury, neutrophil infiltration and increased apoptosis (caspase-3) and some degree of interstitial fibrosis. Vanillin prophylactic administration prevented the deterioration of kidney function, oxidative and nitrosative stress. It also suppressed NOX-4 and up-regulated NRF2 and HO-1 expression in renal tissue. Inflammation, apoptosis and tubular injury were also inhibited by vanillin. CONCLUSIONS: The antioxidant mechanism by which vanillin protected against CP-induced nephrotoxicity involved the inhibition of NOX-4 along with the stimulation of Nrf2/HO-1 signalling pathway. These in turn inhibited inflammation and apoptosis.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Benzaldeídos/farmacologia , Heme Oxigenase (Desciclizante)/metabolismo , Nefropatias/prevenção & controle , Rim/efeitos dos fármacos , NADPH Oxidase 4/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Apoptose/efeitos dos fármacos , Cisplatino , Modelos Animais de Doenças , Fibrose , Rim/enzimologia , Rim/patologia , Nefropatias/induzido quimicamente , Nefropatias/enzimologia , Nefropatias/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Transdução de Sinais
19.
Int Immunopharmacol ; 87: 106813, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32707499

RESUMO

The prevalence of diabetes mellitus (DM) drastically increases worldwide. Persistent hyperglycemia affects body microvasculature causing injuries to kidney producing diabetic nephropathy (DNE). Manifestation of these microvascular complications is associated with disturbed redox homeostasis. The current study evaluated the effect of isoliquiritigenin (ISLQ), a bioactive chalcone found in licorice which is known for its antioxidant effect, on diabetes-induced renal injury. DM was prompted in male rats by streptozotocin (STZ, 50 mg/kg, intraperitoneally). ISLQ was administrated by oral gavage for 8 weeks at a dose (20 mg/kg/day). Features of renal injury were observed in kidneys of diabetic rats including, albuminuria and deteriorated renal function. Renal dysfunction was associated with reduced sirtuin-1 (Sirt-1) expression, increased renal oxidative stress, nucleotide-binding domain and leucine-rich repeat containing protein-3 (NLRP3), nuclear factor-κB (NFκB) and inflammatory cytokines interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α). Moreover, there was significant downregulation of anti-inflammatory cytokine interleukin-10 (IL-10), glomerular and tubular injury and collagen accumulation. ISLQ administration preserved renal function and architecture, restored Sirt1 and renal oxidant-antioxidant balance, dampened inflammation and attenuated collagen accumulation. It can be inferred that ISLQ possess a protective effect and could have a potential as a food supplement to halt development and progression of DNE.


Assuntos
Anti-Inflamatórios/uso terapêutico , Chalconas/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Rim/patologia , Animais , Glycyrrhiza , Humanos , Masculino , Modelos Animais , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos , Ratos Sprague-Dawley , Sirtuína 1/genética , Sirtuína 1/metabolismo
20.
Biomolecules ; 10(3)2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138265

RESUMO

Homocysteine (Hcy) is an amino acid that requires vitamins B12 and folic acid for its metabolism. Vitamins B12 and folic acid deficiencies lead to hyperhomocysteinemia (HHcy, elevated Hcy), which is linked to the development of diabetic retinopathy (DR), age-related macular degeneration (AMD), and Alzheimer's disease (AD). The goal of the current study was to explore inflammation as an underlying mechanism of HHcy-induced pathology in age related diseases such as AMD, DR, and AD. Mice with HHcy due to a lack of the enzyme cystathionine-ß-synthase (CBS) and wild-type mice were evaluated for microglia activation and inflammatory markers using immuno-fluorescence (IF). Tissue lysates isolated from the brain hippocampal area from mice with HHcy were evaluated for inflammatory cytokines using the multiplex assay. Human retinal endothelial cells, retinal pigment epithelial cells, and monocyte cell lines treated with/without Hcy were evaluated for inflammatory cytokines and NFκB activation using the multiplex assay, western blot analysis, and IF. HHcy induced inflammatory responses in mouse brain, retina, cultured retinal, and microglial cells. NFκB was activated and cytokine array analysis showed marked increase in pro-inflammatory cytokines and downregulation of anti-inflammatory cytokines. Therefore, elimination of excess Hcy or reduction of inflammation is a promising intervention for mitigating damage associated with HHcy in aging diseases such as DR, AMD, and AD.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Retinopatia Diabética/metabolismo , Homocisteína/metabolismo , Degeneração Macular/metabolismo , Retina/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Homocisteína/genética , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Degeneração Macular/genética , Camundongos , Camundongos Knockout , Retina/patologia , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA