Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
ACS Pharmacol Transl Sci ; 6(7): 1028-1042, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37470014

RESUMO

Triple-negative breast cancer (TNBC) remains a disease with a paucity of targeted treatment opportunities. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is involved in a wide range of physiological processes, including the sensing of xenobiotics, immune function, development, and differentiation. Different small-molecule AhR ligands drive strikingly varied cellular and organismal responses. In certain cancers, AhR activation by select small molecules induces cell cycle arrest or apoptosis via activation of tumor-suppressive transcriptional programs. AhR is expressed in triple-negative breast cancers, presenting a tractable therapeutic opportunity. Here, we identify a novel ligand of the aryl hydrocarbon receptor that potently and selectively induces cell death in triple-negative breast cancer cells and TNBC stem cells via the AhR. Importantly, we found that this compound, Analog 523, exhibits minimal cytotoxicity against multiple normal human primary cells. Analog 523 represents a high-affinity AhR ligand with potential for future clinical translation as an anticancer agent.

2.
Biochem Pharmacol ; 215: 115706, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37506922

RESUMO

Triple-negative breast cancer (TNBC) represents around 15% of the 2.26 million breast cancers diagnosed worldwide annually and has the worst outcome. Despite recent therapeutic advances, there remains a lack of targeted therapies for this breast cancer subtype. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor with biological roles in regulating development, xenobiotic metabolism, cell cycle progression and cell death. AhR activation by select ligands can promote tumor suppression in multiple cancer types. AhR can negatively regulate the activity of different oncogenic signaling pathways and can directly upregulate tumor suppressor genes such as p27Kip1. To determine the role of AhR in TNBC, we generated AhR-deficient cancer cells and investigated the impact of AhR loss on TNBC cell growth phenotypes. We found that AhR-deficient MDA-MB-468 TNBC cells have increased proliferation and formed significantly more colonies compared to AhR expressing cells. These cells without AhR expression grew aggressively in vivo. To determine the molecular targets driving this phenotype, we performed transcriptomic profiling in AhR expressing and AhR knockout MDA-MB-468 cells and identified tyrosine receptor kinases, as well as other genes involved in proliferation, survival and clonogenicity that are repressed by AhR. In order to determine therapeutic targeting of AhR in TNBC, we investigated the anti-cancer effects of the novel AhR ligand 11-chloro-7H-benzimidazo[2,1-a]benzo[de]iso-quinolin-7-one (11-Cl-BBQ), which belongs to a class of high affinity, rapidly metabolized AhR ligands called benzimidazoisoquinolines (BBQs). 11-Cl-BBQ induced AhR-dependent cancer cell-selective growth inhibition and strongly inhibited colony formation in TNBC cells.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Ligantes , Linhagem Celular Tumoral , Proliferação de Células
3.
Biology (Basel) ; 12(4)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37106727

RESUMO

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor involved in regulating a wide range of biological responses. A diverse array of xenobiotics and endogenous small molecules bind to the receptor and drive unique phenotypic responses. Due in part to its role in mediating toxic responses to environmental pollutants, AhR activation has not been traditionally viewed as a viable therapeutic approach. Nonetheless, the expression and activation of AhR can inhibit the proliferation, migration, and survival of cancer cells, and many clinically approved drugs transcriptionally activate AhR. Identification of novel select modulators of AhR-regulated transcription that promote tumor suppression is an active area of investigation. The development of AhR-targeted anticancer agents requires a thorough understanding of the molecular mechanisms driving tumor suppression. Here, we summarized the tumor-suppressive mechanisms regulated by AhR with an emphasis on the endogenous functions of the receptor in opposing carcinogenesis. In multiple different cancer models, the deletion of AhR promotes increased tumorigenesis, but a precise understanding of the molecular cues and the genetic targets of AhR involved in this process is lacking. The intent of this review was to synthesize the evidence supporting AhR-dependent tumor suppression and distill insights for development of AhR-targeted cancer therapeutics.

4.
FEBS J ; 290(8): 2064-2084, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36401795

RESUMO

Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor and functions as a tumour suppressor in different cancer models. In the present study, we report detailed characterization of 11-chloro-7H-benzimidazo[2,1-a]benzo[de]iso-quinolin-7-one (11-Cl-BBQ) as a select modulator of AhR-regulated transcription (SMAhRT) with anti-cancer actions. Treatment of lung cancer cells with 11-Cl-BBQ induced potent and sustained AhR-dependent anti-proliferative effects by promoting G1 phase cell cycle arrest. Investigation of 11-Cl-BBQ-induced transcription in H460 cells with or without the AhR expression by RNA-sequencing revealed activation of p53 signalling. In addition, 11-Cl-BBQ suppressed multiple pathways involved in DNA replication and increased expression of cyclin-dependent kinase inhibitors, including p27Kip1 , in an AhR-dependent manner. CRISPR/Cas9 knockout of individual genes revealed the requirement for both p53 and p27Kip1 for the AhR-mediated anti-proliferative effects. Our results identify 11-Cl-BBQ as a potential lung cancer therapeutic, highlight the feasibility of targeting AhR and provide important mechanistic insights into AhR-mediated-anticancer actions.


Assuntos
Neoplasias Pulmonares , Receptores de Hidrocarboneto Arílico , Humanos , Proteínas de Ciclo Celular/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Pulmão/metabolismo , Neoplasias Pulmonares/genética , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , RNA , Proteína Supressora de Tumor p53/genética
5.
PLoS One ; 16(6): e0252233, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34077449

RESUMO

Tumor angiogenesis is critical for the growth and progression of cancer. As such, angiostasis is a treatment modality for cancer with potential utility for multiple types of cancer and fewer side effects. However, clinical success of angiostatic monotherapies has been moderate, at best, causing angiostatic treatments to lose their early luster. Previous studies demonstrated compensatory mechanisms that drive tumor vascularization despite the use of angiostatic monotherapies, as well as the potential for combination angiostatic therapies to overcome these compensatory mechanisms. We screened clinically approved angiostatics to identify specific combinations that confer potent inhibition of tumor-induced angiogenesis. We used a novel modification of the ex ovo chick chorioallantoic membrane (CAM) model that combined confocal and automated analyses to quantify tumor angiogenesis induced by glioblastoma tumor onplants. This model is advantageous due to its low cost and moderate throughput capabilities, while maintaining complex in vivo cellular interactions that are difficult to replicate in vitro. After screening multiple combinations, we determined that glioblastoma-induced angiogenesis was significantly reduced using a combination of bevacizumab (Avastin®) and temsirolimus (Torisel®) at doses below those where neither monotherapy demonstrated activity. These preliminary results were verified extensively, with this combination therapy effective even at concentrations further reduced 10-fold with a CI value of 2.42E-5, demonstrating high levels of synergy. Thus, combining bevacizumab and temsirolimus has great potential to increase the efficacy of angiostatic therapy and lower required dosing for improved clinical success and reduced side effects in glioblastoma patients.


Assuntos
Inibidores da Angiogênese/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Membrana Corioalantoide/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Sinergismo Farmacológico , Glioblastoma/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Animais , Bevacizumab/administração & dosagem , Galinhas , Membrana Corioalantoide/patologia , Glioblastoma/irrigação sanguínea , Glioblastoma/patologia , Humanos , Neovascularização Patológica/patologia , Ratos , Sirolimo/administração & dosagem , Sirolimo/análogos & derivados , Células Tumorais Cultivadas
6.
Biology (Basel) ; 10(4)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804830

RESUMO

In order to develop new cancer therapeutics, rapid, reliable, and relevant biological models are required to screen and validate drug candidates for both efficacy and safety. In recent years, the zebrafish (Danio rerio) has emerged as an excellent model organism suited for these goals. Larval fish or immunocompromised adult fish are used to engraft human cancer cells and serve as a platform for screening potential drug candidates. With zebrafish sharing ~80% of disease-related orthologous genes with humans, they provide a low cost, high-throughput alternative to mouse xenografts that is relevant to human biology. In this review, we provide background on the methods and utility of zebrafish xenograft models in cancer research.

7.
Apoptosis ; 24(5-6): 529-537, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30879165

RESUMO

Although new cancer therapeutics are discovered at a rapid pace, lack of effective means of delivery and cancer chemoresistance thwart many of the promising therapeutics. We demonstrate a method that confronts both of these issues with the light-activated delivery of a Bcl-2 functional converting peptide, NuBCP-9, using hollow gold nanoshells. This approach has shown not only to increase the efficacy of the peptide 30-fold in vitro but also has shown to reduce paclitaxel resistant H460 lung xenograft tumor growth by 56.4%.


Assuntos
Antineoplásicos/química , Sistemas de Liberação de Medicamentos , Ouro/química , Nanoconchas/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Liberação Controlada de Fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Terapia a Laser , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Paclitaxel/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA