Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 165: 115023, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37329708

RESUMO

Dual-receptor targeted (DRT) nanoparticles which contain two distinct targeting agents may exhibit higher cell selectivity, cellular uptake, and cytotoxicity toward cancer cells than single-ligand targeted nanoparticle systems without additional functionality. The purpose of this study is to prepare DRT poly(lactic-co-glycolic acid) (PLGA) nanoparticles for targeting the delivery of docetaxel (DTX) to the EGFR and PD-L1 receptor positive cancer cells such as human glioblastoma multiform (U87-MG) and human non-small cell lung cancer (A549) cell lines. Anti-EGFR and anti-PD-L1 antibody were decorated on DTX loaded PLGA nanoparticles to prepare DRT-DTX-PLGA via. single emulsion solvent evaporation method. Physicochemical characterizations of DRT-DTX-PLGA, such as particle size, zeta-potential, morphology, and in vitro DTX release were also evaluated. The average particle size of DRT-DTX-PLGA was 124.2 ± 1.1 nm with spherical and smooth morphology. In the cellular uptake study, the DRT-DTX-PLGA endocytosed by the U87-MG and A549 cells was single ligand targeting nanoparticle. From the in vitro cell cytotoxicity, and apoptosis studies, we reported that DRT-DTX-PLGA exhibited high cytotoxicity and enhanced the apoptotic cell compared to the single ligand-targeted nanoparticle. The dual receptor mediated endocytosis of DRT-DTX-PLGA showed a high binding affinity effect that leads to high intracellular DTX concentration and exhibited high cytotoxic properties. Thus, DRT nanoparticles have the potential to improve cancer therapy by providing selectivity over single-ligand-targeted nanoparticles.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas , Humanos , Docetaxel/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Ligantes , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/química , Portadores de Fármacos/química , Linhagem Celular Tumoral
2.
Pharmaceutics ; 13(2)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671698

RESUMO

Triple negative breast cancer (TNBC) with poor prognosis and aggressive nature accounts for 10-20% of all invasive breast cancer (BC) cases and is detected in as much as 15% of individuals diagnosed with BC. Currently, due to the absence of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor 2 (HER2) receptor, there is no hormone-based therapy for TNBC. In addition, there are still no FDA-approved targeted therapies for patients with TNBC. TNBC treatment is challenging owing to poor prognosis, tumor heterogeneity, chemotherapeutic side effects, the chance of metastasis, and multiple drug-resistance. Therefore, various bio-inspired tumor-homing nano systems responding to intra- and extra- cellular stimuli are an urgent need to treat TNBC patients who do not respond to current chemotherapy. In this review, intensive efforts have been made for exploring cell-membrane coated nanoparticles and immune cell-targeted nanoparticles (immunotherapy) to modulate the tumor microenvironment and deliver accurate amounts of therapeutic agents to TNBC without stimulating the immune system.

3.
Nanomedicine ; 33: 102349, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33359414

RESUMO

Drug resistance and inefficient localization of chemotherapeutic agent limit the current treatment strategy in locally advanced melanoma (MEL), accounting to the 10-year survival rate from 24% to 68%. In this study we constructed anti-PD-L1 conjugated and doxorubicin loaded hollow gold nanoshell (T-HGNS-DOX) for targeted and localized chemo-photothermal therapy of MEL by the conjugation of LA-PEG-anti-PD-L1 antibody and short PEG chain on the surface of HGNS-DOX. Near infrared (NIR) as well as pH dependent drug release profile was observed. Significant uptake of DOX following NIR due to high PD-L1 receptors resulted in pronounced anticancer effect of T-HGNS-DOX. Following intratumoral administration, maximum nanoparticles retention with the significant reduction in tumor growth was observed as a result of elevated apoptosis marker (cleaved caspase-3, cleaved PARP) as well as downregulation of proliferative (Ki-67) and angiogenesis marker (CD31). Cumulatively, our system avoids the systemic toxicities of the nanosystem thereby providing maximum chemotherapeutic retention in tumor.


Assuntos
Anticorpos Monoclonais Humanizados/química , Doxorrubicina/química , Ouro/química , Melanoma/tratamento farmacológico , Melanoma/radioterapia , Nanocápsulas/química , Nanoconchas/química , Animais , Anticorpos Monoclonais Humanizados/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Composição de Medicamentos , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Masculino , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fototerapia , Propriedades de Superfície
4.
J Control Release ; 329: 645-664, 2021 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-33022330

RESUMO

Tumor-associated macrophages (TAM) constitute up to 50-80% of stromal cells in breast cancer (BC), and are correlated with poor prognosis. As epidermal growth factor receptor (EGFR) is overexpressed in 60-80% of patients with triple negative breast cancer (TNBC), photoimmunotherapy (PIT) with cetuximab-targeted gold nanorods (CTX-AuNR) is an attractive therapeutic strategy for TNBC. The 3D cell culture model can mimic drug resistance conferred by the tumor microenvironment and its 3D organization; therefore, TAM and non-TAM embedded TNBC spheroids were constructed to evaluate the therapeutic efficacy of CTX-AuNR plus near infrared (NIR) irradiation. Cytotoxicity, reactive oxygen species (ROS) generation, and protein expression were compared in TNBC (± TAM) spheroids. The IC50 values of doxorubicin (DOX) in TAM-embedded TNBC spheroids were significantly higher than those in TNBC spheroids, demonstrating drug resistance, which could be explained by activation of IL-10/IL-10 receptor/STAT3/Bcl-2 signaling. However, 3D in vitro and in vivo results demonstrated that the efficacy of CTX-AuNR plus NIR irradiation was not significantly different in (± TAM) embedded TNBC cells. By enhancing ROS generation, CTX-AuNR plus NIR irradiation reprogrammed TAM polarization to the M1 anti-tumor phenotype, as indicated by macrophage mannose receptor (MMR) downregulation. Thus, CTX-AuNR plus NIR can serve as a potent PIT strategy for treating EGFR-overexpressing TNBC cells.


Assuntos
Nanotubos , Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Cetuximab , Resistência a Medicamentos , Ouro , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Microambiente Tumoral , Macrófagos Associados a Tumor
5.
J Control Release ; 321: 509-518, 2020 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-32087300

RESUMO

Clinical intraportal pancreatic islet infusion is popular for treating type I diabetes. However, multiple doses of islets and anti-rejection protocols are needed to compensate for early large cell losses post-infusion due to the harsh hepatic environment. Thus, extrahepatic sites are utilized to enable efficient islet engraftment and reduce islet mass. Here, we reported an effective islet revascularization protocol that was based on the co-implantation of islet/fibrin gel construct with poly(lactic-co-glycolic) acid sheet releasing NECA (5'-(N-ethylcarboxamido) adenosine; a potent agonist of adenosine) into mouse epididymal fat pad. Thin, flexible sheets (d = 4 mm) prepared by simple casting exhibited sustained NECA release for up to 21 days, which effectively improved early islet engraftment with a median diabetic reversal time of 18.5 days. Western blotting revealed the facilitative effect of NECA on VEGF expression from islets in vitro and from grafts in vivo. In addition, NECA directly promoted the angiogenic activities of islet-derived endothelial cells by enhancing their proliferation and vessel-like tube formation. As a result, neovasculatures were effectively formed in the engrafted islet vicinity, as evidenced by vasculature imaging and immunofluorescence. Taken together, we suggest NECA-releasing PLGA sheets offer a safe and effective drug delivery system that enhances islet engraftment while reducing islet mass at extrahepatic sites for clinical relevance.


Assuntos
Adenosina-5'-(N-etilcarboxamida) , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Próteses e Implantes , Animais , Células Endoteliais , Camundongos , Transplante de Órgãos , Polímeros
6.
Mol Pharm ; 16(3): 1184-1199, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30698975

RESUMO

Colorectal cancer (CRC) is the third leading cause of cancer-related death worldwide. The prognosis and overall survival of CRC are known to be significantly correlated with the overexpression of PD-L1. Since combination therapies can significantly improve therapeutic efficacy, we constructed doxorubicin (DOX) conjugated and anti-PD-L1 targeting gold nanoparticles (PD-L1-AuNP-DOX) for the targeted chemo-photothermal therapy of CRC. DOX and anti-PD-L1 antibody were conjugated to the α-terminal end group of lipoic acid polyethylene glycol N-hydroxysuccinimide (LA-PEG-NHS) using an amide linkage, and PD-L1-AuNP-DOX was constructed by linking LA-PEG-DOX, LA-PEG-PD-L1, and a short PEG chain on the surface of AuNP using thiol-Au covalent bonds. Physicochemical characterizations and biological studies of PD-L1-AuNP-DOX were performed in the presence of near-infrared (NIR) irradiation (biologic studies were conducted using cellular uptake, apoptosis, and cell cycle assays in CT-26 cells). PD-L1-AuNP-DOX (40.0 ± 3.1 nm) was successfully constructed and facilitated the efficient intracellular uptake of DOX as evidenced by pronounced apoptotic effects (66.0%) in CT-26 cells. PD-L1-AuNP-DOX treatment plus NIR irradiation significantly and synergistically suppressed the in vitro proliferation of CT-26 cells by increasing apoptosis and cell cycle arrest. The study demonstrates that PD-L1-AuNP-DOX in combination with synergistic targeted chemo-photothermal therapy has a considerable potential for the treatment of localized CRC.


Assuntos
Anticorpos/uso terapêutico , Antígeno B7-H1/imunologia , Neoplasias Colorretais/tratamento farmacológico , Doxorrubicina/uso terapêutico , Ouro/química , Nanopartículas Metálicas/química , Fotoquimioterapia/métodos , Animais , Anticorpos/administração & dosagem , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Terapia Combinada/métodos , Sistemas de Liberação de Medicamentos/métodos , Camundongos , Polietilenoglicóis/química , Espécies Reativas de Oxigênio/metabolismo , Succinimidas/química , Ácido Tióctico/química
7.
Eur J Pharm Sci ; 119: 39-48, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29649570

RESUMO

The purpose of this study was to prepare spray freeze-dried particles of immunoglobulin G (IgG) using various combinations of trehalose and different amino acids (leucine, phenylalanine, arginine, cysteine, and glycine), and investigate the effect of the amino acids on the stability of IgG during the spray freeze-drying (SFD) process and storage. The morphology and structural integrity of the processed particles were evaluated by physical and spectroscopic techniques. SFD-processed IgG without any excipient resulted in the formation of aggregates corresponding to approximately 14% of IgG. In contrast, IgG formulations stabilized using an optimal level of leucine, phenylalanine, or glycine in the presence of trehalose displayed aggregates <2.2%. In particular, phenylalanine combined with trehalose was most effective in stabilizing IgG against shear, freezing, and dehydration stresses during SFD. Arginine and cysteine were destabilizers displaying aggregation and fragmentation of IgG, respectively. Aggregation and fragmentation were evaluated by dynamic light scattering, ultraviolet spectrophotometry, size-exclusion chromatography, and microchip capillary gel electrophoresis. The IgG formulations prepared with leucine, phenylalanine, or glycine in the presence of trehalose showed good stability after storage at 40 °C and 75% relative humidity for 2 months. Thus, a combination of the excipients trehalose and uncharged, nonpolar amino acids appears effective for production of stable SFD IgG formulations.


Assuntos
Aminoácidos/química , Excipientes/química , Imunoglobulina G/química , Trealose/química , Química Farmacêutica , Estabilidade de Medicamentos , Liofilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA