Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Rep ; 38: 101742, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38873224

RESUMO

The estrogen-synthesizing enzyme aromatase is expressed in adipose tissue where it controls the local concentration of estrogen. It has been suggested that the organic solvents ethanol and ethylene glycol can induce estrogen synthesis by inhibiting PPARγ activity. Since elevated estrogen synthesis in adipose tissue is a risk factor for breast cancer development, it is of interest to further characterize the mechanisms regulating aromatase expression. Here, we explored the mechanisms by which ethanol and ethylene glycol modulate aromatase mRNA expression and the ultimate conversion of androgens into estrogens. NMR spectroscopy revealed that ethanol and ethylene glycol influence the active state of PPARγ. An inhibitory effect on PPARγ was confirmed by adipogenesis assays and PPARγ target gene expression analysis in adipocytes. However, only ethanol increased aromatase mRNA in differentiated human adipocytes. In contrast, ethylene glycol downregulated aromatase in a PPARγ-independent manner. An animal study using female Wistar rats was conducted to assess the acute effects of ethanol and ethylene glycol on aromatase expression in adipose tissue within a physiological context. No changes in aromatase or PPARγ target gene (Adipoq and Fabp4) levels were observed in adipose tissue or ovary in response to the chemical exposures, suggesting an absence of acute PPARγ-mediated effects in these organs. The results suggest that ethanol and ethylene glycol are weak PPARγ antagonists in mouse and human adipocytes as well as in cell-free NMR spectroscopy. Both compounds seem to affect adipocyte aromatase expression in vitro, where ethanol increased aromatase expression PPARγ-dependently and ethylene glycol decreased aromatase expression independently of PPARγ. No acute effects on aromatase expression or PPARγ activity were observed in adipose tissue or ovary in rats in this study design.

2.
Biochem Pharmacol ; 222: 116095, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38423186

RESUMO

Aromatase is the rate-limiting enzyme in the biosynthesis of estrogens and a key risk factor for hormone receptor-positive breast cancer. In postmenopausal women, estrogens synthesized in adipose tissue promotes the growth of estrogen receptor positive breast cancers. Activation of peroxisome proliferator-activated receptor gamma (PPARγ) in adipose stromal cells (ASCs) leads to decreased expression of aromatase and differentiation of ASCs into adipocytes. Environmental chemicals can act as antagonists of PPARγ and disrupt its function. This study aimed to test the hypothesis that PPARγ antagonists can promote breast cancer by stimulating aromatase expression in human adipose tissue. Primary cells and explants from human adipose tissue as well as A41hWAT, C3H10T1/2, and H295R cell lines were used to investigate PPARγ antagonist-stimulated effects on adipogenesis, aromatase expression, and estrogen biosynthesis. Selected antagonists inhibited adipocyte differentiation, preventing the adipogenesis-associated downregulation of aromatase. NMR spectroscopy confirmed direct interaction between the potent antagonist DEHPA and PPARγ, inhibiting agonist binding. Short-term exposure of ASCs to PPARγ antagonists upregulated aromatase only in differentiated cells, and a similar effect could be observed in human breast adipose tissue explants. Overexpression of PPARG with or without agonist treatment reduced aromatase expression in ASCs. The data suggest that environmental PPARγ antagonists regulate aromatase expression in adipose tissue through two mechanisms. The first is indirect and involves inhibition of adipogenesis, while the second occurs more acutely.


Assuntos
Neoplasias da Mama , PPAR gama , Feminino , Humanos , PPAR gama/genética , PPAR gama/metabolismo , Aromatase/genética , Aromatase/metabolismo , Tecido Adiposo/metabolismo , Estrogênios/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Adipogenia
3.
Sci Rep ; 11(1): 9794, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33963248

RESUMO

The profound energy-expending nature of brown adipose tissue (BAT) thermogenesis makes it an attractive target tissue to combat obesity-associated metabolic disorders. While cold exposure is the strongest inducer of BAT activity, the temporal mechanisms tuning BAT adaptation during this activation process are incompletely understood. Here we show that the scaffold protein Afadin is dynamically regulated by cold in BAT, and participates in cold acclimation. Cold exposure acutely increases Afadin protein levels and its phosphorylation in BAT. Knockdown of Afadin in brown pre-adipocytes does not alter adipogenesis but restricts ß3-adrenegic induction of thermogenic genes expression and HSL phosphorylation in mature brown adipocytes. Consistent with a defect in thermogenesis, an impaired cold tolerance was observed in fat-specific Afadin knockout mice. However, while Afadin depletion led to reduced Ucp1 mRNA induction by cold, stimulation of Ucp1 protein was conserved. Transcriptomic analysis revealed that fat-specific ablation of Afadin led to decreased functional enrichment of gene sets controlling essential metabolic functions at thermoneutrality in BAT, whereas it led to an altered reprogramming in response to cold, with enhanced enrichment of different pathways related to metabolism and remodeling. Collectively, we demonstrate a role for Afadin in supporting the adrenergic response in brown adipocytes and BAT function.


Assuntos
Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Temperatura Baixa , Regulação da Expressão Gênica , Cinesinas/biossíntese , Miosinas/biossíntese , Termogênese , Animais , Cinesinas/genética , Camundongos , Camundongos Knockout , Miosinas/genética
4.
Mol Metab ; 44: 101137, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33285300

RESUMO

OBJECTIVE: Increasing adaptive thermogenesis by stimulating browning in white adipose tissue is a promising method of improving metabolic health. However, the molecular mechanisms underlying this transition remain elusive. Our study examined the molecular determinants driving the differentiation of precursor cells into thermogenic adipocytes. METHODS: In this study, we conducted temporal high-resolution proteomic analysis of subcutaneous white adipose tissue (scWAT) after cold exposure in mice. This was followed by loss- and gain-of-function experiments using siRNA-mediated knockdown and CRISPRa-mediated induction of gene expression, respectively, to evaluate the function of the transcriptional regulator Y box-binding protein 1 (YBX1) during adipogenesis of brown pre-adipocytes and mesenchymal stem cells. Transcriptomic analysis of mesenchymal stem cells following induction of endogenous Ybx1 expression was conducted to elucidate transcriptomic events controlled by YBX1 during adipogenesis. RESULTS: Our proteomics analysis uncovered 509 proteins differentially regulated by cold in a time-dependent manner. Overall, 44 transcriptional regulators were acutely upregulated following cold exposure, among which included the cold-shock domain containing protein YBX1, peaking after 24 h. Cold-induced upregulation of YBX1 also occurred in brown adipose tissue, but not in visceral white adipose tissue, suggesting a role of YBX1 in thermogenesis. This role was confirmed by Ybx1 knockdown in brown and brite preadipocytes, which significantly impaired their thermogenic potential. Conversely, inducing Ybx1 expression in mesenchymal stem cells during adipogenesis promoted browning concurrent with an increased expression of thermogenic markers and enhanced mitochondrial respiration. At a molecular level, our transcriptomic analysis showed that YBX1 regulates a subset of genes, including the histone H3K9 demethylase Jmjd1c, to promote thermogenic adipocyte differentiation. CONCLUSION: Our study mapped the dynamic proteomic changes of murine scWAT during browning and identified YBX1 as a novel factor coordinating the genomic mechanisms by which preadipocytes commit to brite/beige lineage.


Assuntos
Tecido Adiposo Branco/metabolismo , Termogênese/genética , Termogênese/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Adipócitos Marrons/metabolismo , Adipogenia , Tecido Adiposo Marrom/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Regulação da Expressão Gênica , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Masculino , Células-Tronco Mesenquimais , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Proteômica , Gordura Subcutânea/metabolismo , Transcriptoma , Regulação para Cima
5.
Nat Commun ; 11(1): 1421, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32184391

RESUMO

Uncoupling protein-1 (UCP1) plays a central role in energy dissipation in brown adipose tissue (BAT). Using high-throughput library screening of secreted peptides, we identify two fibroblast growth factors (FGF), FGF6 and FGF9, as potent inducers of UCP1 expression in adipocytes and preadipocytes. Surprisingly, this occurs through a mechanism independent of adipogenesis and involves FGF receptor-3 (FGFR3), prostaglandin-E2 and interaction between estrogen receptor-related alpha, flightless-1 (FLII) and leucine-rich-repeat-(in FLII)-interacting-protein-1 as a regulatory complex for UCP1 transcription. Physiologically, FGF6/9 expression in adipose is upregulated by exercise and cold in mice, and FGF9/FGFR3 expression in human neck fat is significantly associated with UCP1 expression. Loss of FGF9 impairs BAT thermogenesis. In vivo administration of FGF9 increases UCP1 expression and thermogenic capacity. Thus, FGF6 and FGF9 are adipokines that can regulate UCP1 through a transcriptional network that is dissociated from brown adipogenesis, and act to modulate systemic energy metabolism.


Assuntos
Adipócitos Marrons/metabolismo , Adipogenia , Fator 6 de Crescimento de Fibroblastos/metabolismo , Fator 9 de Crescimento de Fibroblastos/metabolismo , Obesidade/metabolismo , Proteína Desacopladora 1/metabolismo , Adipócitos Marrons/citologia , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/metabolismo , Animais , Fator 6 de Crescimento de Fibroblastos/genética , Fator 9 de Crescimento de Fibroblastos/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/fisiopatologia , Termogênese , Proteína Desacopladora 1/genética
6.
J Biol Chem ; 287(15): 12016-26, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22337886

RESUMO

Disturbed Wnt signaling has been implicated in numerous diseases, including type 2 diabetes and the metabolic syndrome. In the present study, we have investigated cross-talk between insulin and Wnt signaling pathways using preadipocytes with and without knockdown of the Wnt co-receptors LRP5 and LRP6 and with and without knock-out of insulin and IGF-1 receptors. We find that Wnt stimulation leads to phosphorylation of insulin signaling key mediators, including Akt, GSK3ß, and ERK1/2, although with a lower fold stimulation and slower time course than observed for insulin. These Wnt effects are insulin/IGF-1 receptor-dependent and are lost in insulin/IGF-1 receptor double knock-out cells. Conversely, in LRP5 knockdown preadipocytes, insulin-induced phosphorylation of IRS1, Akt, GSK3ß, and ERK1/2 is highly reduced. This effect is specific to insulin, as compared with IGF-1, stimulation and appears to be due to an inducible interaction between LRP5 and the insulin receptor as demonstrated by co-immunoprecipitation. These data demonstrate that Wnt and insulin signaling pathways exhibit cross-talk at multiple levels. Wnt induces phosphorylation of Akt, ERK1/2, and GSK3ß, and this is dependent on insulin/IGF-1 receptors. Insulin signaling also involves the Wnt co-receptor LRP5, which has a positive effect on insulin signaling. Thus, altered Wnt and LRP5 activity can serve as modifiers of insulin action and insulin resistance in the pathophysiology of diabetes and metabolic syndrome.


Assuntos
Adipócitos/metabolismo , Insulina/fisiologia , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/fisiologia , Receptor Cross-Talk , Via de Sinalização Wnt , Células 3T3-L1 , Animais , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Imunoprecipitação , Insulina/metabolismo , Cinética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Proteína Wnt3A/fisiologia , beta Catenina/metabolismo
7.
Nat Rev Mol Cell Biol ; 7(2): 85-96, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16493415

RESUMO

Physiologically important cell-signalling networks are complex, and contain several points of regulation, signal divergence and crosstalk with other signalling cascades. Here, we use the concept of 'critical nodes' to define the important junctions in these pathways and illustrate their unique role using insulin signalling as a model system.


Assuntos
Insulina/fisiologia , Receptor de Insulina/fisiologia , Transdução de Sinais , Animais , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
8.
Diabetes ; 53 Suppl 3: S97-S103, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15561930

RESUMO

Defects in insulin secretion, resulting from loss of function or destruction of pancreatic beta-cells, trigger diabetes. Interleukin (IL)-1beta is a proinflammatory cytokine that is involved in type 1 and type 2 diabetes development and impairs beta-cell survival and function. Because effective insulin signaling is required for the optimal beta-cell function, we assessed the effect of IL-1beta on the insulin pathway in a rat pancreatic beta-cell line. We show that IL-1beta decreases insulin-induced tyrosine phosphorylation of the insulin receptor (IR) and insulin receptor substrate (IRS) proteins as well as phosphatidylinositol 3-kinase (PI3K) activation, and that this action is not due to the IL-1beta-dependent nitric oxide (NO) production in RINm5F cells. We next analyzed if suppressor of cytokine signaling (SOCS)-3, which can be induced by multiple cytokines and which we identified as an insulin action inhibitor, was implicated in the IL-1beta inhibitory effect on insulin signaling in these cells. We show that IL-1beta increases SOCS-3 expression and induces SOCS-3/IR complex formation in RINm5F cells. Moreover, we find that ectopically expressed SOCS-3 associates with the IR and reduces insulin-dependent IR autophosphorylation and IRS/PI3K pathway in a way comparable to IL-1beta treatment in RINm5F cells. We propose that IL-1beta decreases insulin action in beta-cells through the induction of SOCS-3 expression, and that this effect potentially alters insulin-induced beta-cell survival.


Assuntos
Insulina/metabolismo , Interleucina-1/farmacologia , Ilhotas Pancreáticas/fisiologia , Proteínas Repressoras/fisiologia , Fatores de Transcrição/fisiologia , Animais , Linhagem Celular Tumoral , Clonagem Molecular , DNA Complementar/genética , Regulação Neoplásica da Expressão Gênica , Secreção de Insulina , Insulinoma , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/imunologia , Neoplasias Pancreáticas , Fosforilação , RNA Mensageiro/genética , Ratos , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA