Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Sci Rep ; 14(1): 15941, 2024 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987633

RESUMO

Adeno-associated viruses (AAVs) are promising gene therapy vectors, but challenges arise when treating patients with preexisting neutralizing antibodies. Worldwide seroprevalence studies provide snapshots of existing immunity in diverse populations. Owing to the uniqueness of the Basque socio-geographical landscape, we investigated the seroprevalence of eight AAV serotypes in residents of the Basque Country. We found the highest seroprevalence of AAV3, and the lowest seroprevalence of AAV9. Additionally, less than 50% of the Basque population has neutralizing antibodies against AAV4, AAV6, and AAV9. Our findings provide insight into AAV infections in the Basque region, public health, and the development of AAV-based therapeutics.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Dependovirus , Humanos , Dependovirus/genética , Dependovirus/imunologia , Estudos Soroepidemiológicos , Masculino , Feminino , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Adulto , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Pessoa de Meia-Idade , Espanha/epidemiologia , Adulto Jovem , Estudos de Coortes , Infecções por Parvoviridae/epidemiologia , Infecções por Parvoviridae/imunologia , Infecções por Parvoviridae/virologia , Sorogrupo
2.
Inflamm Bowel Dis ; 30(2): 167-182, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37536268

RESUMO

BACKGROUND AND AIMS: Inflammatory bowel disease (IBD) is a prevalent chronic noncurable disease associated with profound metabolic changes. The discovery of novel molecular indicators for unraveling IBD etiopathogenesis and the diagnosis and prognosis of IBD is therefore pivotal. We sought to determine the distinctive metabolic signatures from the different IBD subgroups before treatment initiation. METHODS: Serum and urine samples from newly diagnosed treatment-naïve IBD patients and age and sex-matched healthy control (HC) individuals were investigated using proton nuclear magnetic resonance spectroscopy. Metabolic differences were identified based on univariate and multivariate statistical analyses. RESULTS: A total of 137 Crohn's disease patients, 202 ulcerative colitis patients, and 338 HC individuals were included. In the IBD cohort, several distinguishable metabolites were detected within each subgroup comparison. Most of the differences revealed alterations in energy and amino acid metabolism in IBD patients, with an increased demand of the body for energy mainly through the ketone bodies. As compared with HC individuals, differences in metabolites were more marked and numerous in Crohn's disease than in ulcerative colitis patients, and in serum than in urine. In addition, clustering analysis revealed 3 distinct patient profiles with notable differences among them based on the analysis of their clinical, anthropometric, and metabolomic variables. However, relevant phenotypical differences were not found among these 3 clusters. CONCLUSIONS: This study highlights the molecular alterations present within the different subgroups of newly diagnosed treatment-naïve IBD patients. The metabolomic profile of these patients may provide further understanding of pathogenic mechanisms of IBD subgroups. Serum metabotype seemed to be especially sensitive to the onset of IBD.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Colite Ulcerativa/diagnóstico , Doença de Crohn/diagnóstico , Metabolômica , Intestinos
3.
Hepatology ; 76(4): 1121-1134, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35220605

RESUMO

BACKGROUND AND AIMS: We previously identified subsets of patients with NAFLD with different metabolic phenotypes. Here we align metabolomic signatures with cardiovascular disease (CVD) and genetic risk factors. APPROACH AND RESULTS: We analyzed serum metabolome from 1154 individuals with biopsy-proven NAFLD, and from four mouse models of NAFLD with impaired VLDL-triglyceride (TG) secretion, and one with normal VLDL-TG secretion. We identified three metabolic subtypes: A (47%), B (27%), and C (26%). Subtype A phenocopied the metabolome of mice with impaired VLDL-TG secretion; subtype C phenocopied the metabolome of mice with normal VLDL-TG; and subtype B showed an intermediate signature. The percent of patients with NASH and fibrosis was comparable among subtypes, although subtypes B and C exhibited higher liver enzymes. Serum VLDL-TG levels and secretion rate were lower among subtype A compared with subtypes B and C. Subtype A VLDL-TG and VLDL-apolipoprotein B concentrations were independent of steatosis, whereas subtypes B and C showed an association with these parameters. Serum TG, cholesterol, VLDL, small dense LDL5,6 , and remnant lipoprotein cholesterol were lower among subtype A compared with subtypes B and C. The 10-year high risk of CVD, measured with the Framingham risk score, and the frequency of patatin-like phospholipase domain-containing protein 3 NAFLD risk allele were lower in subtype A. CONCLUSIONS: Metabolomic signatures identify three NAFLD subgroups, independent of histological disease severity. These signatures align with known CVD and genetic risk factors, with subtype A exhibiting a lower CVD risk profile. This may account for the variation in hepatic versus cardiovascular outcomes, offering clinically relevant risk stratification.


Assuntos
Doenças Cardiovasculares , Hepatopatia Gordurosa não Alcoólica , Animais , Apolipoproteínas B , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , VLDL-Colesterol/metabolismo , Fatores de Risco de Doenças Cardíacas , Lipoproteínas VLDL , Fígado/patologia , Camundongos , Hepatopatia Gordurosa não Alcoólica/patologia , Fosfolipases/metabolismo , Fatores de Risco , Triglicerídeos/metabolismo
4.
J Proteome Res ; 19(6): 2419-2428, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32380831

RESUMO

Prostate cancer is the second most common tumor and the fifth cause of cancer-related death among men worldwide. PC cells exhibit profound signaling and metabolic reprogramming that account for the acquisition of aggressive features. Although the metabolic understanding of this disease has increased in recent years, the analysis of such alterations through noninvasive methodologies in biofluids remains limited. Here, we used NMR-based metabolomics on a large cohort of urine samples (more than 650) from PC and benign prostate hyperplasia (BPH) patients to investigate the molecular basis of this disease. Multivariate analysis failed to distinguish between the two classes, highlighting the modest impact of prostate alterations on urine composition and the multifactorial nature of PC. However, univariate analysis of urine metabolites unveiled significant changes, discriminating PC from BPH. Metabolites with altered abundance in urine from PC patients revealed changes in pathways related to cancer biology, including glycolysis and the urea cycle. We found out that metabolites from such pathways were diminished in the urine from PC individuals, strongly supporting the notion that PC reduces nitrogen and carbon waste in order to maximize their usage in anabolic processes that support cancer cell growth.


Assuntos
Nitrogênio , Neoplasias da Próstata , Carbono , Humanos , Masculino , Metabolômica , Neoplasias da Próstata/diagnóstico , Espectroscopia de Prótons por Ressonância Magnética
5.
Sci Rep ; 7(1): 10497, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28874799

RESUMO

Liver fibrosis must be evaluated in patients with hepatitis C virus (HCV) after liver transplantation because its severity affects their prognosis and the recurrence of HCV. Since invasive biopsy is still the gold standard to identify patients at risk of graft loss from rapid fibrosis progression, it becomes crucial the development of new accurate, non-invasive methods that allow repetitive examination of the patients. Therefore, we have developed a non-invasive, accurate model to distinguish those patients with different liver fibrosis stages. Two hundred and three patients with HCV were histologically classified (METAVIR) into five categories of fibrosis one year after liver transplantation. In this cross-sectional study, patients at fibrosis stages F0-F1 (n = 134) were categorised as "slow fibrosers" and F2-F4 (n = 69) as "rapid fibrosers". Chloroform/methanol serum extracts were analysed by reverse ultra-high performance liquid chromatography coupled to mass spectrometry. A diagnostic model was built through linear discriminant analyses. An algorithm consisting of two sphingomyelins and two phosphatidylcholines accurately classifies rapid and slow fibrosers after transplantation. The proposed model yielded an AUROC of 0.92, 71% sensitivity, 85% specificity, and 84% accuracy. Moreover, specific bile acids and sphingomyelins increased notably along with liver fibrosis severity, differentiating between rapid and slow fibrosers.


Assuntos
Cirrose Hepática/metabolismo , Metaboloma , Metabolômica , Idoso , Biomarcadores , Feminino , Hepatite C/complicações , Hepatite C/metabolismo , Hepatite C/patologia , Hepatite C/terapia , Humanos , Metabolismo dos Lipídeos , Lipídeos/sangue , Cirrose Hepática/diagnóstico , Cirrose Hepática/etiologia , Testes de Função Hepática , Transplante de Fígado/efeitos adversos , Transplante de Fígado/métodos , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Curva ROC , Fatores de Risco
6.
Curr Top Med Chem ; 17(24): 2752-2766, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28685692

RESUMO

Chronic liver diseases are one of the major causess of mortality worldwide. It can manifest through many different forms including chronic virus infection, alcohol abuse, metabolic syndromes such as non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. At early stages, the liver can repair the damage produced by the insult. However, upon continuous damage, the accumulation of molecules triggers fibrosis, which subsequently progresses towards cirrhosis and, ultimately, hepatocarcinoma. Early diagnosis of liver disease and a proper staging of fibrosis are crucial in therapy since drugs are only effective at incipient and intermediate stages of the disease. In this context, liver biopsy is the gold standard, but it is invasive and can produce complications. Metabolomics has emerged as a potent discipline to identify new biomarkers in a non-invasive way. Here, we compile and critically review the existing NMR-based metabolomics studies on chronic liver diseases, specifically covering non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, alcoholic liver disease and those produced by virus infection.


Assuntos
Hepatopatias/diagnóstico , Hepatopatias/metabolismo , Espectroscopia de Ressonância Magnética , Metabolômica , Doença Crônica , Humanos , Hepatopatias/virologia
8.
Nat Cell Biol ; 18(6): 645-656, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27214280

RESUMO

Cellular transformation and cancer progression is accompanied by changes in the metabolic landscape. Master co-regulators of metabolism orchestrate the modulation of multiple metabolic pathways through transcriptional programs, and hence constitute a probabilistically parsimonious mechanism for general metabolic rewiring. Here we show that the transcriptional co-activator peroxisome proliferator-activated receptor gamma co-activator 1α (PGC1α) suppresses prostate cancer progression and metastasis. A metabolic co-regulator data mining analysis unveiled that PGC1α is downregulated in prostate cancer and associated with disease progression. Using genetically engineered mouse models and xenografts, we demonstrated that PGC1α opposes prostate cancer progression and metastasis. Mechanistically, the use of integrative metabolomics and transcriptomics revealed that PGC1α activates an oestrogen-related receptor alpha (ERRα)-dependent transcriptional program to elicit a catabolic state and metastasis suppression. Importantly, a signature based on the PGC1α-ERRα pathway exhibited prognostic potential in prostate cancer, thus uncovering the relevance of monitoring and manipulating this pathway for prostate cancer stratification and treatment.


Assuntos
Mitocôndrias/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Neoplasias da Próstata/metabolismo , Animais , Modelos Animais de Doenças , Metabolismo Energético/fisiologia , Proteínas de Choque Térmico/metabolismo , Humanos , Masculino , Camundongos , Metástase Neoplásica/patologia , Neoplasias da Próstata/patologia , Receptores de Estrogênio/metabolismo , Receptor ERRalfa Relacionado ao Estrogênio
9.
Hepatology ; 56(5): 1870-82, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22576182

RESUMO

UNLABELLED: RNA-binding proteins (RBPs) play a major role in the control of messenger RNA (mRNA) turnover and translation rates. We examined the role of the RBP, human antigen R (HuR), during cholestatic liver injury and hepatic stellate cell (HSC) activation. HuR silencing attenuated fibrosis development in vivo after BDL, reducing liver damage, oxidative stress, inflammation, and collagen and alpha smooth muscle actin (α-SMA) expression. HuR expression increased in activated HSCs from bile duct ligation mice and during HSC activation in vitro, and HuR silencing markedly reduced HSC activation. HuR regulated platelet-derived growth factor (PDGF)-induced proliferation and migration and controlled the expression of several mRNAs involved in these processes (e.g., Actin, matrix metalloproteinase 9, and cyclin D1 and B1). These functions of HuR were linked to its abundance and cytoplasmic localization, controlled by PDGF, by extracellular signal-regulated kinases (ERK) and phosphatidylinositol 3-kinase activation as well as ERK/LKB1 (liver kinase B1) activation, respectively. More important, we identified the tumor suppressor, LKB1, as a novel downstream target of PDGF-induced ERK activation in HSCs. HuR also controlled transforming growth factor beta (TGF-ß)-induced profibrogenic actions by regulating the expression of TGF-ß, α-SMA, and p21. This was likely the result of an increased cytoplasmic localization of HuR, controlled by TGF-ß-induced p38 mitogen-activated protein kinase activation. Finally, we found that HuR and LKB1 (Ser428) levels were highly expressed in activated HSCs in human cirrhotic samples. CONCLUSION: Our results show that HuR is important for the pathogenesis of liver fibrosis development in the cholestatic injury model, for HSC activation, and for the response of activated HSC to PDGF and TGF-ß.


Assuntos
Antígenos de Superfície/metabolismo , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/metabolismo , Actinas/metabolismo , Animais , Antígenos de Superfície/genética , Butadienos/farmacologia , Tetracloreto de Carbono , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ducto Colédoco , Proteínas ELAV , Proteína Semelhante a ELAV 1 , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , Inativação Gênica , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/fisiologia , Humanos , Ligadura , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Camundongos , Nitrilas/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/efeitos dos fármacos , Proteínas de Ligação a RNA/genética , Ratos , Fator de Crescimento Transformador beta/metabolismo
10.
J Neurosci ; 32(14): 4944-58, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22492050

RESUMO

An important prerequisite to myelination in peripheral nerves is the establishment of one-to-one relationships between axons and Schwann cells. This patterning event depends on immature Schwann cell proliferation, apoptosis, and morphogenesis, which are governed by coordinated changes in gene expression. Here, we found that the RNA-binding protein human antigen R (HuR) was highly expressed in immature Schwann cells, where genome-wide identification of its target mRNAs in vivo in mouse sciatic nerves using ribonomics showed an enrichment of functionally related genes regulating these processes. HuR coordinately regulated expression of several genes to promote proliferation, apoptosis, and morphogenesis in rat Schwann cells, in response to NRG1, TGFß, and laminins, three major signals implicated in this patterning event. Strikingly, HuR also binds to several mRNAs encoding myelination-related proteins but, contrary to its typical function, negatively regulated their expression, likely to prevent ectopic myelination during development. These functions of HuR correlated with its abundance and subcellular localization, which were regulated by different signals in Schwann cells.


Assuntos
Proteínas ELAV/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Neurogênese/fisiologia , Proteínas de Ligação a RNA/fisiologia , Células de Schwann/citologia , Células de Schwann/fisiologia , Animais , Animais Recém-Nascidos , Apoptose/fisiologia , Proliferação de Células , Células Cultivadas , Proteínas ELAV/biossíntese , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Wistar
11.
Hepatology ; 55(4): 1237-48, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22095636

RESUMO

UNLABELLED: Hu antigen R (HuR) is a central RNA-binding protein regulating cell dedifferentiation, proliferation, and survival, which are well-established hallmarks of cancer. HuR is frequently overexpressed in tumors correlating with tumor malignancy, which is in line with a role for HuR in tumorigenesis. However, the precise mechanism leading to changes in HuR expression remains unclear. In the liver, HuR plays a crucial role in hepatocyte proliferation, differentiation, and transformation. Here, we unraveled a novel mean of regulation of HuR expression in hepatocellular carcinoma (HCC) and colon cancer. HuR levels correlate with the abundance of the oncogene, murine double minute 2 (Mdm2), in human HCC and colon cancer metastases. HuR is stabilized by Mdm2-mediated NEDDylation in at least three lysine residues, ensuring its nuclear localization and protection from degradation. CONCLUSION: This novel Mdm2/NEDD8/HuR regulatory framework is essential for the malignant transformation of tumor cells, which, in turn, unveils a novel signaling paradigm that is pharmacologically amenable for cancer therapy.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias do Colo/metabolismo , Proteínas ELAV/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Ubiquitinas/metabolismo , Animais , Carcinoma Hepatocelular/patologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Transformação Celular Neoplásica/patologia , Neoplasias do Colo/patologia , Citoplasma/metabolismo , Modelos Animais de Doenças , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína NEDD8 , Transdução de Sinais/fisiologia
12.
Hepatology ; 52(5): 1621-31, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20815019

RESUMO

UNLABELLED: LKB1, originally considered a tumor suppressor, plays an important role in hepatocyte proliferation and liver regeneration. Mice lacking the methionine adenosyltransferase (MAT) gene MAT1A exhibit a chronic reduction in hepatic S-adenosylmethionine (SAMe) levels, basal activation of LKB1, and spontaneous development of nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC). These results are relevant for human health because patients with liver cirrhosis, who are at risk to develop HCC, have a marked reduction in hepatic MAT1A expression and SAMe synthesis. In this study, we isolated a cell line (SAMe-deficient [SAMe-D]) from MAT1A knockout (MAT1A-KO) mouse HCC to examine the role of LKB1 in the development of liver tumors derived from metabolic disorders. We found that LKB1 is required for cell survival in SAMe-D cells. LKB1 regulates Akt-mediated survival independent of phosphoinositide 3-kinase, adenosine monophosphate protein-activated kinase (AMPK), and mammalian target of rapamycin complex (mTORC2). In addition, LKB1 controls the apoptotic response through phosphorylation and retention of p53 in the cytoplasm and the regulation of herpesvirus-associated ubiquitin-specific protease (HAUSP) and Hu antigen R (HuR) nucleocytoplasmic shuttling. We identified HAUSP as a target of HuR. Finally, we observed cytoplasmic staining of p53 and p-LKB1(Ser428) in a NASH-HCC animal model (from MAT1A-KO mice) and in liver biopsies obtained from human HCC derived from both alcoholic steatohepatitis and NASH. CONCLUSION: The SAMe-D cell line is a relevant model of HCC derived from NASH disease in which LKB1 is the principal conductor of a new regulatory mechanism and could be a practical tool for uncovering new therapeutic strategies.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , 1-Fosfatidilinositol 4-Quinase/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Divisão Celular , Ativação Enzimática , Inativação Gênica , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Metionina Adenosiltransferase/deficiência , Metionina Adenosiltransferase/genética , Camundongos , Camundongos Knockout , Fosforilação , Reação em Cadeia da Polimerase , RNA Neoplásico/genética , RNA Neoplásico/isolamento & purificação
13.
Hepatology ; 52(1): 105-14, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20578266

RESUMO

UNLABELLED: Deletion of glycine N-methyltransferase (GNMT), the main gene involved in liver S-adenosylmethionine (SAM) catabolism, leads to the hepatic accumulation of this molecule and the development of fatty liver and fibrosis in mice. To demonstrate that the excess of hepatic SAM is the main agent contributing to liver disease in GNMT knockout (KO) mice, we treated 1.5-month-old GNMT-KO mice for 6 weeks with nicotinamide (NAM), a substrate of the enzyme NAM N-methyltransferase. NAM administration markedly reduced hepatic SAM content, prevented DNA hypermethylation, and normalized the expression of critical genes involved in fatty acid metabolism, oxidative stress, inflammation, cell proliferation, and apoptosis. More importantly, NAM treatment prevented the development of fatty liver and fibrosis in GNMT-KO mice. Because GNMT expression is down-regulated in patients with cirrhosis, and because some subjects with GNMT mutations have spontaneous liver disease, the clinical implications of the present findings are obvious, at least with respect to these latter individuals. Because NAM has been used for many years to treat a broad spectrum of diseases (including pellagra and diabetes) without significant side effects, it should be considered in subjects with GNMT mutations. CONCLUSION: The findings of this study indicate that the anomalous accumulation of SAM in GNMT-KO mice can be corrected by NAM treatment leading to the normalization of the expression of many genes involved in fatty acid metabolism, oxidative stress, inflammation, cell proliferation, and apoptosis, as well as reversion of the appearance of the pathologic phenotype.


Assuntos
Fígado Gorduroso/prevenção & controle , Glicina N-Metiltransferase/genética , Cirrose Hepática/prevenção & controle , Niacinamida/uso terapêutico , S-Adenosilmetionina/metabolismo , Animais , Fígado Gorduroso/genética , Deleção de Genes , Expressão Gênica , Cirrose Hepática/genética , Camundongos , Camundongos Knockout , S-Adenosilmetionina/antagonistas & inibidores
14.
Gastroenterology ; 138(5): 1943-53, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20102719

RESUMO

BACKGROUND & AIMS: Hepatic de-differentiation, liver development, and malignant transformation are processes in which the levels of hepatic S-adenosylmethionine are tightly regulated by 2 genes: methionine adenosyltransferase 1A (MAT1A) and methionine adenosyltransferase 2A (MAT2A). MAT1A is expressed in the adult liver, whereas MAT2A expression primarily is extrahepatic and is associated strongly with liver proliferation. The mechanisms that regulate these expression patterns are not completely understood. METHODS: In silico analysis of the 3' untranslated region of MAT1A and MAT2A revealed putative binding sites for the RNA-binding proteins AU-rich RNA binding factor 1 (AUF1) and HuR, respectively. We investigated the posttranscriptional regulation of MAT1A and MAT2A by AUF1, HuR, and methyl-HuR in the aforementioned biological processes. RESULTS: During hepatic de-differentiation, the switch between MAT1A and MAT2A coincided with an increase in HuR and AUF1 expression. S-adenosylmethionine treatment altered this homeostasis by shifting the balance of AUF1 and methyl-HuR/HuR, which was identified as an inhibitor of MAT2A messenger RNA (mRNA) stability. We also observed a similar temporal distribution and a functional link between HuR, methyl-HuR, AUF1, and MAT1A and MAT2A during fetal liver development. Immunofluorescent analysis revealed increased levels of HuR and AUF1, and a decrease in methyl-HuR levels in human livers with hepatocellular carcinoma (HCC). CONCLUSIONS: Our data strongly support a role for AUF1 and HuR/methyl-HuR in liver de-differentiation, development, and human HCC progression through the posttranslational regulation of MAT1A and MAT2A mRNAs.


Assuntos
Antígenos de Superfície/metabolismo , Diferenciação Celular , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Hepatócitos/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/metabolismo , Neoplasias Hepáticas/metabolismo , Metionina Adenosiltransferase/metabolismo , Proteínas de Ligação a RNA/metabolismo , Regiões 3' não Traduzidas , Animais , Antígenos de Superfície/genética , Sítios de Ligação , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Células Cultivadas , Proteínas ELAV , Proteína Semelhante a ELAV 1 , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Idade Gestacional , Glicina N-Metiltransferase/deficiência , Glicina N-Metiltransferase/genética , Meia-Vida , Hepatócitos/patologia , Ribonucleoproteína Nuclear Heterogênea D0 , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Metionina Adenosiltransferase/genética , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Interferência de RNA , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Ratos , Ratos Wistar , S-Adenosilmetionina/metabolismo , Transdução de Sinais , Transfecção
15.
Hepatology ; 50(2): 443-52, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19582817

RESUMO

UNLABELLED: Hepatic S-adenosylmethionine (SAMe) is maintained constant by the action of methionine adenosyltransferase I/III (MATI/III), which converts methionine into SAMe and glycine N-methyltransferase (GNMT), which eliminates excess SAMe to avoid aberrant methylation reactions. During liver regeneration after partial hepatectomy (PH) MATI/III activity is inhibited leading to a decrease in SAMe. This injury-related reduction in SAMe promotes hepatocyte proliferation because SAMe inhibits hepatocyte DNA synthesis. In MATI/III-deficient mice, hepatic SAMe is reduced, resulting in uncontrolled hepatocyte growth and impaired liver regeneration. These observations suggest that a reduction in SAMe is crucial for successful liver regeneration. In support of this hypothesis we report that liver regeneration is impaired in GNMT knockout (GNMT-KO) mice. Liver SAMe is 50-fold higher in GNMT-KO mice than in control animals and is maintained constant following PH. Mortality after PH was higher in GNMT-KO mice than in control animals. In GNMT-KO mice, nuclear factor kappaB (NFkappaB), signal transducer and activator of transcription-3 (STAT3), inducible nitric oxide synthase (iNOS), cyclin D1, cyclin A, and poly (ADP-ribose) polymerase were activated at baseline. PH in GNMT-KO mice was followed by the inactivation of STAT3 phosphorylation and iNOS expression. NFkappaB, cyclin D1 and cyclin A were not further activated after PH. The LKB1/AMP-activated protein kinase/endothelial nitric oxide synthase cascade was inhibited, and cytoplasmic HuR translocation was blocked despite preserved induction of DNA synthesis in GNMT-KO after PH. Furthermore, a previously unexpected relationship between AMPK phosphorylation and NFkappaB activation was uncovered. CONCLUSION: These results indicate that multiple signaling pathways are impaired during the liver regenerative response in GNMT-KO mice, suggesting that GNMT plays a critical role during liver regeneration, promoting hepatocyte viability and normal proliferation.


Assuntos
Glicina N-Metiltransferase/metabolismo , Regeneração Hepática , S-Adenosilmetionina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Ciclo Celular , Células Cultivadas , Hepatectomia , Hepatócitos/metabolismo , Masculino , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
16.
Hepatology ; 49(2): 608-17, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19177591

RESUMO

UNLABELLED: S-adenosylmethionine (SAMe) is involved in numerous complex hepatic processes such as hepatocyte proliferation, death, inflammatory responses, and antioxidant defense. One of the most relevant actions of SAMe is the inhibition of hepatocyte proliferation during liver regeneration. In hepatocytes, SAMe regulates the levels of cytoplasmic HuR, an RNA-binding protein that increases the half-life of target messenger RNAs such as cyclin D1 and A2 via inhibition of hepatocyte growth factor (HGF)-mediated adenosine monophosphate-activated protein kinase (AMPK) phosphorylation. Because AMPK is activated by the tumor suppressor kinase LKB1, and AMPK activates endothelial nitric oxide (NO) synthase (eNOS), and NO synthesis is of great importance for hepatocyte proliferation, we hypothesized that in hepatocytes HGF may induce the phosphorylation of LKB1, AMPK, and eNOS through a process regulated by SAMe, and that this cascade might be crucial for hepatocyte growth. We demonstrate that the proliferative response of hepatocytes involves eNOS phosphorylation via HGF-mediated LKB1 and AMPK phosphorylation, and that this process is regulated by SAMe and NO. We also show that knockdown of LKB1, AMPK, or eNOS with specific interference RNA (iRNA) inhibits HGF-mediated hepatocyte proliferation. Finally, we found that the LKB1/AMPK/eNOS cascade is activated during liver regeneration after partial hepatectomy and that this process is impaired in mice treated with SAMe before hepatectomy, in knockout mice deficient in hepatic SAMe, and in eNOS knockout mice. CONCLUSION: We have identified an LKB1/AMPK/eNOS cascade regulated by HGF, SAMe, and NO that functions as a critical determinant of hepatocyte proliferation during liver regeneration after partial hepatectomy.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Hepatócitos/citologia , Hepatócitos/enzimologia , Regeneração Hepática/fisiologia , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Divisão Celular , Replicação do DNA , Inativação Gênica , Hepatectomia , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Fosforilação
17.
Int J Biochem Cell Biol ; 41(5): 969-76, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19027869

RESUMO

Non-alcoholic fatty liver disease includes a broad spectrum of liver abnormalities ranging from simple steatosis to non-alcoholic steatohepatitis (NASH), which can progress to cirrhosis and hepatocellular carcinoma. Patients with primary NASH have the metabolic (or insulin resistance) syndrome, condition typically associated with obesity, diabetes, hyperlipidemia and hypertension. To understand the mechanisms implicated in development of NASH, animal models of non-alcoholic fatty liver disease have been generated. These have greatly improved our understanding of some of the aspects of this disease. The challenge now is to identify the common mechanisms between the animal models and humans, which could eventually lead to a better prognosis and development of novel therapeutic strategies.


Assuntos
Modelos Animais de Doenças , Fígado Gorduroso/patologia , Hepatite/patologia , Animais , Fígado Gorduroso/diagnóstico , Fígado Gorduroso/terapia , Hepatite/diagnóstico , Hepatite/terapia , Humanos
18.
Biochem Soc Trans ; 36(Pt 5): 848-52, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18793149

RESUMO

SAMe (S-adenosylmethionine) is the main methyl donor group in the cell. MAT (methionine adenosyltransferase) is the unique enzyme responsible for the synthesis of SAMe from methionine and ATP, and SAMe is the common point between the three principal metabolic pathways: polyamines, transmethylation and transsulfuration that converge into the methionine cycle. SAMe is now also considered a key regulator of metabolism, proliferation, differentiation, apoptosis and cell death. Recent results show a new signalling pathway implicated in the proliferation of the hepatocyte, where AMPK (AMP-activated protein kinase) and HuR, modulated by SAMe, take place in HGF (hepatocyte growth factor)-mediated cell growth. Abnormalities in methionine metabolism occur in several animal models of alcoholic liver injury, and it is also altered in patients with liver disease. Both high and low levels of SAMe predispose to liver injury. In this regard, knockout mouse models have been developed for the enzymes responsible for SAMe synthesis and catabolism, MAT1A and GNMT (glycine N-methyltransferase) respectively. These knockout mice develop steatosis and HCC (hepatocellular carcinoma), and both models closely replicate the pathologies of human disease, which makes them extremely useful to elucidate the mechanism underlying liver disease. These new findings open a wide range of possibilities to discover novel targets for clinical applications.


Assuntos
Proliferação de Células , S-Adenosilmetionina/metabolismo , Transdução de Sinais/fisiologia , Proteínas Quinases Ativadas por AMP , Animais , Antígenos de Superfície/metabolismo , Modelos Animais de Doenças , Proteínas ELAV , Proteína Semelhante a ELAV 1 , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Fígado/patologia , Hepatopatias/patologia , Hepatopatias/fisiopatologia , Metionina/metabolismo , Camundongos , Camundongos Knockout , Complexos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ligação a RNA/metabolismo
19.
J Proteome Res ; 7(12): 5157-66, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19367702

RESUMO

Exosomes represent a discrete population of vesicles that are secreted from various cell types to the extracellular media. Their protein and lipid composition are a consequence of sorting events at the level of the multivesicular body, a central organelle which integrates endocytic and secretory pathways. Characterization of exosomes from different biological samples has shown the presence of common as well as cell-type specific proteins. Remarkably, the protein content of the exosomes is modified upon pathological or stress conditions. Hepatocytes play a central role in the body response to stress metabolizing potentially harmful endogenous substances as well as xenobiotics. In the present study, we described and characterized for the first time exosome secretion in nontumoral hepatocytes, and with the use of a systematic proteomic approach, we establish the first extensive proteome of a hepatocyte-derived exosome population which should be useful in furthering our understanding of the hepatic function and in the identification of components that may serve as biomarkers for hepatic alterations. Our analysis identifies a significant number of proteins previously described among exosomes derived from others cell types as well as proteins involved in metabolizing lipoproteins, endogenous compounds and xenobiotics, not previously described in exosomes. Furthermore, we demonstrated that exosomal membrane proteins can constitute an interesting tool to express nonexosomal proteins into exosomes with therapeutic purposes.


Assuntos
Biomarcadores/metabolismo , Exossomos/metabolismo , Hepatócitos/metabolismo , Proteínas/química , Proteômica/métodos , Animais , Antígenos CD/biossíntese , Linhagem Celular , Biologia Computacional/métodos , Bases de Dados Factuais , Endocitose , Fígado/metabolismo , Camundongos , Glicoproteínas da Membrana de Plaquetas/biossíntese , Proteoma , Ratos , Tetraspanina 30
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA