Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(5): 3414-3430, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38687465

RESUMO

We have semi-synthesized a natural product 7-acetylhorminone from crude extract of Premna obtusifolia (Indian headache tree), which is active against colorectal cancer after probation through computational screening methods as it passed through the set parameters of pharmacokinetics (most important nonblood-brain barrier permeant) and drug likeliness (e.g., Lipinski's, Ghose's, Veber's rule) which most other phytoconstituents failed to pass combined with docking with EGFR protein which is highly upregulated in the colorectal carcinoma cell. The structure of 7-acetylhorminone was confirmed by single crystal X-ray diffraction studies and 1H NMR, 13C NMR, and COSY studies. To validate the theoretical studies, first, in vitro experiments were carried out against human colorectal carcinoma cell lines (HCT116) which revealed the potent cytotoxic efficacy of 7-acetylhorminone and verified preliminary investigation. Second, the drugability of 7-acetylhorminone interaction with serum albumin proteins (HSA and BSA) is evaluated both theoretically and experimentally via steady-state fluorescence spectroscopic studies, circular dichroism, isothermal titration calorimetry, and molecular docking. In summary, this study reveals the applicability of 7-acetylhorminone as a potent drug candidate or as a combinatorial drug against colorectal cancer.


Assuntos
Neoplasias Colorretais , Soroalbumina Bovina , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Soroalbumina Bovina/metabolismo , Soroalbumina Bovina/química , Ensaios de Seleção de Medicamentos Antitumorais , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Estrutura Molecular , Teste de Materiais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Células HCT116 , Proliferação de Células/efeitos dos fármacos , Simulação de Acoplamento Molecular , Sobrevivência Celular/efeitos dos fármacos , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo
2.
Chem Sci ; 15(12): 4504-4509, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38516076

RESUMO

The Simons process is an electrochemical fluorination method to prepare organofluorine compounds. Despite the wide application, the underlying mechanism is still unclear. We report the investigation of the black film formed on the surface of the anodes in aHF by an in situ Ni K-edge X-ray absorption near edge structure (XANES) investigation. An electrochemical cell for in situ X-ray absorption spectroscopy (XAS) is presented.

3.
Phys Chem Chem Phys ; 25(33): 21970-21980, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37555235

RESUMO

Chemically synthesized iron is in demand for biomedical applications due to its large saturation magnetization compared to iron oxides. The polyol process, suitable for obtaining Co and Ni particles and their alloys, is laborious in synthesizing Fe. The reaction yields iron oxides, and the reaction pathway remains unexplored. This study shows that a vicinal polyol, such as 1,2-propanediol, is suitable for obtaining Fe rather than 1,3-propanediol owing to the formation of a reducible Fe intermediate complex. X-ray absorption spectroscopy analysis reveals the ferric octahedral geometry and tetrahedral geometry in the ferrous state of the reaction intermediates in 1,2-propanediol and 1,3-propanediol, respectively. The final product obtained using a vicinal polyol is Fe with a γ-Fe2O3 shell, while the terminal polyol is favourable for Fe3O4. The distinct Fe-Fe and Fe-O bond lengths suggest the presence of a carboxylate group and a terminal alkoxide ligand in the intermediate of 1,2-propanediol. A large Fe-Fe bond distance suggests diiron complexes with bidentate carboxylate bridges. Prominent high-spin and low-spin states indicate the possibility of transition, which favors the reduction of iron ions in the reaction using 1,2-propanediol.

4.
ACS Omega ; 7(51): 48572-48582, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36591129

RESUMO

Clerodin was isolated from the medicinal plant Clerodendrum infortunatum, and CSD search showed the first crystal structure of clerodin by a single-crystal X-ray diffraction study. We checked its binding potential with target proteins by docking and conducted network pharmacology analysis, ADMET analysis, in silico pathway analysis, normal mode analysis (NMA), and cytotoxic activity studies to evaluate clerodin as a potential anticancer agent. The cell viability studies of clerodin on the human breast carcinoma cell line (MCF-7) showed toxicity on MCF-7 cells but no toxicity toward normal human lymphocyte cells (HLCs). The anticancer mechanism of clerodin was validated by its enhanced capacity to produce intracellular reactive oxygen species (ROS) and to lower the reduced glutathione content in MCF-7 cells.

5.
Nanomaterials (Basel) ; 10(4)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283789

RESUMO

Nickel nanoparticles are an active research area due to their multiple applications as catalysts in different processes. A variety of preparation techniques have been reported for the synthesis of these nanoparticles, including solvothermal, microwave-assisted, and emulsion techniques. The well-studied solvothermal oleylamine synthesis route comes with the drawback of needing standard air-free techniques and often space-consuming glassware. Here, we present a facile and straightforward synthesis method for size-controlled highly monodisperse nickel nanoparticles avoiding the use of, e.g., Schlenk techniques and space-consuming labware. The nanoparticles produced by this novel synthetic route were investigated using small-angle X-ray scattering, transmission electron microscopy, X-ray diffraction, and X-ray spectroscopy. The nanoparticles were in a size range of 4‒16 nm, show high sphericity, no oxidation, and no agglomeration after synthesis.

6.
J Struct Biol ; 203(3): 263-272, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29857134

RESUMO

Amyloid fibrils are polymers formed by proteins under specific conditions and in many cases they are related to pathogenesis, such as Parkinson's and Alzheimer's diseases. Their hallmark is the presence of a ß-sheet structure. High resolution structural data on these systems as well as information gathered from multiple complementary analytical techniques is needed, from both a fundamental and a pharmaceutical perspective. Here, a previously reported de novo designed, pH-switchable coiled coil-based peptide that undergoes structural transitions resulting in fibril formation under physiological conditions has been exhaustively characterized by transmission electron microscopy (TEM), cryo-TEM, atomic force microscopy (AFM), wide-angle X-ray scattering (WAXS) and solid-state NMR (ssNMR). Overall, a unique 2-dimensional carpet-like assembly composed of large coexisiting ribbon-like, tubular and funnel-like structures with a clearly resolved protofilament substructure is observed. Whereas electron microscopy and scattering data point somewhat more to a hairpin model of ß-fibrils, ssNMR data obtained from samples with selectively labelled peptides are in agreement with both, hairpin structures and linear arrangements.


Assuntos
Doença de Alzheimer/genética , Amiloide/química , Proteínas Amiloidogênicas/química , Peptídeos/química , Sequência de Aminoácidos , Amiloide/ultraestrutura , Proteínas Amiloidogênicas/genética , Proteínas Amiloidogênicas/ultraestrutura , Microscopia Crioeletrônica , Humanos , Microscopia de Força Atômica , Ressonância Magnética Nuclear Biomolecular , Peptídeos/genética , Domínios Proteicos/genética , Estrutura Secundária de Proteína
7.
ACS Biomater Sci Eng ; 4(10): 3578-3587, 2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33465920

RESUMO

In this work, we describe a simple solvothermal route for the synthesis of Eu3+-doped gadolinium orthovanadate nanocrystals (Eu:GdVO4-PAA) functionalized with poly(acrylic)acid (PAA), that are applicable as cell labeling probes for multimodal cellular imaging. The Eu3+ doping of the vanadate matrix provides optical functionality, due to red photoluminescence after illumination with UV light. The Gd3+ ions of the nanocrystals reduce the T1 relaxation time of surrounding water protons, allowing these nanocrystals to act as a positive MRI contrast agent with a r1 relaxivity of 1.97 mM-1 s-1. Low background levels of Eu3+, Gd3+, and V5+ in biological systems make them an excellent label for elemental microscopy by Laser Ablation (LA)-ICP-MS. Synthesis resulted in polycrystalline nanocrystals with a hydrodynamic diameter of 55 nm and a crystal size of 36.7 nm, which were further characterized by X-ray diffraction (XRD), photoluminescence spectroscopy (PL) and transmission electron microscopy (TEM). The multifunctional nanocrystals were subsequently used for intracellular labeling of both human adipose-derived stem cells (MSCs) and A549 (adenocarcinomic human alveolar basal epithelial) cells.

8.
Phys Chem Chem Phys ; 19(48): 32226-32234, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29131216

RESUMO

The nature of the small iron-oxo oligomers in iron-(iii) aqueous solutions has a determining effect on the chemical processes that govern the formation of nanoparticles in aqueous phase. Here we report on a liquid-jet photoelectron-spectroscopy experiment for the investigation of the electronic structure of the occurring iron-oxo oligomers in FeCl3 aqueous solutions. The only iron species in the as-prepared 0.75 M solution are Fe3+ monomers. Addition of NaOH initiates Fe3+ hydrolysis which is followed by the formation of iron-oxo oligomers. At small enough NaOH concentrations, corresponding to approximately [OH]/[Fe] = 0.2-0.25 ratio, the iron oligomers can be stabilized for several hours without engaging in further aggregation. Here, we apply a combination of non-resonant as well as iron 2p and oxygen 1s resonant photoelectron spectroscopy from a liquid microjet to detect the electronic structure of the occurring species. Specifically, the oxygen 1s partial electron yield X-ray absorption (PEY-XA) spectra are found to exhibit a peak well below the onset of liquid water and OH- (aq) absorption. The iron 2p absorption gives rise to signal centered between the main absorption bands typical for aqueous Fe3+. Absorption bands in both PEY-XA spectra are found to correlate with an enhanced photoelectron peak near 20 eV binding energy, which demonstrates the sensitivity of resonant photoelectron (RPE) spectroscopy to mixing between iron and ligand orbitals. These various signals from the iron-oxo oligomers exhibit maximum intensity at [OH]/[Fe] = 0.25 ratio. For the same ratio, we observe changes in the pH as well as in complementary Raman spectra, which can be assigned to the transition from monomeric to oligomeric species. At approximately [OH]/[Fe] = 0.3 we begin to observe particles larger than 1 nm in radius, detected by small-angle X-ray scattering.

9.
Inorg Chem ; 56(9): 5342-5351, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28414225

RESUMO

N-H bond activation of gaseous ammonia is achieved at room temperature in a reversible solvent-free reaction using a solid dicyclopalladated azobenzene complex. Monitoring of the gas-solid reaction in real-time by in situ solid-state Raman spectroscopy enabled a detailed insight into the stepwise activation pathway proceeding to the final amido complex via a stable diammine intermediate. Gas-solid synthesis allowed for isolation and subsequent structural characterization of the intermediate and the final amido product, which presents the first dipalladated complex with the PdII-(µ-NH2)-PdII bridge. Gas-solid reaction is readily followed via color changes associated with conformational switching of the palladated azobenzene backbone. The reaction proceeds analogously in solution and was characterized by UV-vis and NMR spectroscopies showing the same stepwise route to the amido complex. Combining the experimental data with density functional theory calculations we propose a stepwise mechanism of this heterolytic N-H bond activation assisted by exogenous ammonia.

10.
Dalton Trans ; 43(21): 7945-57, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24715093

RESUMO

Three N-(pyridine-2-ylcarbamothioyl)benzamide derivatives were synthesized by the reaction of potassium thiocyanate, benzoyl chloride, and 2-amino pyridine derivatives in one pot. The obtained derivatives were oxidized using copper(ii) chloride. During the oxidation, two hydrogen atoms were removed, cyclization of the derivatives occurred, and finally, three new N-(2H-[1,2,4]thiadiazolo[2,3-a]pyridine-2-ylidene)benzamide derivatives were produced. Coordination of these three new derivative ligands to the copper(II) ion resulted in the formation of three new complexes: dichlorobis(N-(2H-[1,2,4]thiadiazolo[2,3-a]pyridine-2-ylidene)benzamide)copper(II), dichlorobis(N-(7-methyl-2H-[1,2,4]thiadiazolo[2,3-a]pyridine-2ylidene)benzamide)copper(II), and dichlorobis(N-(5-methyl-2H-[1,2,4]thiadiazolo[2,3-a]pyridine-2-ylidene)benzamide)copper(II). All the synthesized products were characterized by IR, (1)H NMR, and (13)C NMR spectroscopies. Crystal structures of the obtained N-(pyridine-2-ylcarbamothioyl)benzamide derivatives, N-(2H-[1,2,4]thiadiazolo[2,3-a]pyridine-2-ylidene)benzamide derivatives, and complexes were determined using X-ray single-crystal diffraction; the positions of atoms, bond lengths, bond angles, and dihedral angles were also determined. In all complexes, the coordination of two large monodentate ligands and two chloride anions to the copper(ii) ion resulted in the formation of a stable planar geometry around the central ion. Three N-(pyridine-2-ylcarbamothioyl)benzamide derivatives, three N-(2H-[1,2,4]thiadiazolo[2,3-a]pyridine-2-ylidene)benzamide derivatives, and three complexes were evaluated for their cytotoxicity against five human cancer cell lines (breast cancer cell line MDA-MB-231, neuroblastoma cell line SK-N-MC, prostate adenocarcinoma cell line LNCap, nasopharyngeal epidermoid carcinoma cell line KB, and liver cancer cell line HEPG-2) using an in vitro analysis. The N-(pyridine-2-ylcarbamothioyl)benzamide derivatives showed no cytotoxic activity, whereas the N-(2H-[1,2,4]thiadiazolo[2,3-a]pyridine-2-ylidene)benzamide derivatives and their complexes showed significant cytotoxicity, especially against MDA-MB-231 and LNCap cell lines. The complexes demonstrated smaller IC50 values than N-(2H-[1,2,4]thiadiazolo[2,3-a]pyridine-2-ylidene)benzamide derivatives.


Assuntos
Antineoplásicos/química , Benzamidas/química , Complexos de Coordenação/química , Cobre/química , Piridinas/química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Benzamidas/síntese química , Benzamidas/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Cobre/farmacologia , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares , Neoplasias/tratamento farmacológico , Piridinas/síntese química , Piridinas/farmacologia
11.
Biomacromolecules ; 13(11): 3542-51, 2012 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-22946440

RESUMO

The helical coiled coil is a well-studied folding motif that can be used for the design of nanometer-sized bioinspired fibrous structures with potential applications as functional materials. A two-component system of coiled coil based model peptides is investigated, which forms, under acidic conditions, uniform, hundreds of nanometers long, and ~2.6 nm thick trimeric α-helical fibers. In the absence of the other component and under the same solvent conditions, one model peptide forms ß-sheet-rich amyloid fibrils and the other forms stable trimeric α-helical coiled coils, respectively. These observations reveal that the complementary interactions driving helical folding are much stronger here than those promoting the intermolecular ß-sheet formation. The results of this study are important in the context of amyloid inhibition but also open up new avenues for the design of novel fibrous peptidic materials.


Assuntos
Amiloide/química , Nanofibras/química , Peptídeos/química , Dobramento de Proteína , Estrutura Secundária de Proteína
12.
Chem Commun (Camb) ; 47(33): 9369-71, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21769334

RESUMO

We report the spontaneous formation of a clathrate hydrate in a suspended droplet at ambient conditions. A novel method for producing and stabilizing clathrates for analytical studies is described.

13.
Bioconjug Chem ; 20(2): 347-59, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19173600

RESUMO

The preparation and use of bispidine derivatives (3,7-diazabicyclo[3.3.1]nonane) as chelate ligands for radioactive copper isotopes for diagnosis (64Cu) or therapy (67Cu) are reported. Starting from the hexadentate bispidine-based bis(amine)tetrakis(pyridine) ligand 1 with a keto and two ester substituents, the corresponding mono-ol 2 and two dicarboxylic acid derivatives 3 and 5 have been synthesized. A range of techniques, including single-crystal X-ray structure analysis, UV/vis spectroscopy, cyclic voltammetry, thin-layer- (TLC), and high-performance liquid chromatography (HPLC), have been used to characterize the structure and stability of the copper(II)-bispidine complexes. A rapid formation (within 1 min) of stable copper(II)-bispidine complexes under mild conditions (ambient temperature, aqueous solution) has been observed. Challenge experiments of these complexes in the presence of a high excess of competing ligands, such as glutathione, cyclam, or superoxide dismutase (SOD), as well as in rat plasma, gave no evidence of demetalation or transchelation. The bifunctional bispidine derivative 5 can be readily functionalized with biologically active molecules at the pendant carboxylate groups. The coupling of a bombesin analogue betahomo-Glu-betaAla-betaAla-[Cha(13),Nle(14)]BBN(7-14), by condensation of a carboxylate of the bispidine backbone with the N-terminus of the peptide produced the bifunctional ligand 6. The radiocopper(II) complex of this bombesin-bispidine conjugate has a considerable hydrophilicity (log D(o/w) < -2.4), and this leads to a very fast blood clearance (blood: 0.28 +/- 0.02 SUV, 1 h p.i.), low liver tissue accumulation (liver: 1.20 +/- 0.27 SUV, 1 h p.i.), and rapid renal-urinary excretion (kidneys: 6.06 +/- 2.96 SUV, 1 h p.i.) as shown by biodistribution studies of 64Cu-6 in Wistar rats. Preliminary in vivo studies of 64Cu-6 in NMRI nu/nu mice, bearing the human prostate tumor PC-3 showed an accumulation of the conjugate in the tumor (2.25 +/- 0.13 SUV, 12.5 min p.i.; 0.94 +/- 0.05 SUV, 55 min p.i.) and allowed a clear visualization of the gastrin-releasing peptide receptor distribution by positron emission tomography (PET).


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Quelantes/química , Radioisótopos de Cobre/química , Reagentes de Ligações Cruzadas/química , Animais , Bombesina/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/síntese química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacocinética , Ácidos Dicarboxílicos/química , Regulação Neoplásica da Expressão Gênica , Humanos , Cinética , Ligantes , Masculino , Camundongos , Tomografia por Emissão de Pósitrons , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Piridinas/química , Radioquímica , Ratos , Receptores da Bombesina/metabolismo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA