Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Fungal Biol ; 128(2): 1664-1674, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575239

RESUMO

Although tyrosol is a quorum-sensing molecule of Candida species, it has antifungal activity at supraphysiological concentrations. Here, we studied the effect of tyrosol on the physiology and genome-wide transcription of Aspergillus nidulans to gain insight into the background of the antifungal activity of this compound. Tyrosol efficiently reduced germination of conidia and the growth on various carbon sources at a concentration of 35 mM. The growth inhibition was fungistatic rather than fungicide on glucose and was accompanied with downregulation of 2199 genes related to e.g. mitotic cell cycle, glycolysis, nitrate and sulphate assimilation, chitin biosynthesis, and upregulation of 2250 genes involved in e.g. lipid catabolism, amino acid degradation and lactose utilization. Tyrosol treatment also upregulated genes encoding glutathione-S-transferases (GSTs), increased specific GST activities and the glutathione (GSH) content of the cells, suggesting that A. nidulans can detoxify tyrosol in a GSH-dependent manner even though this process was weak. Tyrosol did not induce oxidative stress in this species, but upregulated "response to nutrient levels", "regulation of nitrogen utilization", "carbon catabolite activation of transcription" and "autophagy" genes. Tyrosol may have disturbed the regulation and orchestration of cellular metabolism, leading to impaired use of nutrients, which resulted in growth reduction.


Assuntos
Antifúngicos , Aspergillus nidulans , Álcool Feniletílico/análogos & derivados , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Transcriptoma , Glutationa/genética , Glutationa/metabolismo , Glutationa/farmacologia , Carbono/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
2.
J Fungi (Basel) ; 10(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38535229

RESUMO

Pathogens have to cope with oxidative, iron- and carbon(glucose)-limitation stresses in the human body. To understand how combined iron-carbon limitation alters oxidative stress responses, Aspergillus fumigatus was cultured in glucose-peptone or peptone containing media supplemented or not with deferiprone as an iron chelator. Changes in the transcriptome in these cultures were recorded after H2O2 treatment. Responses to oxidative stress were highly dependent on the availability of glucose and iron. Out of the 16 stress responsive antioxidative enzyme genes, only the cat2 catalase-peroxidase gene was upregulated in more than two culturing conditions. The transcriptional responses observed in iron metabolism also varied substantially in these cultures. Only extracellular siderophore production appeared important regardless of culturing conditions in oxidative stress protection, while the enhanced synthesis of Fe-S cluster proteins seemed to be crucial for oxidative stress treated iron-limited and fast growing (glucose rich) cultures. Although pathogens and host cells live together in the same place, their culturing conditions (e.g., iron availability or occurrence of oxidative stress) can be different. Therefore, inhibition of a universally important biochemical process, like Fe-S cluster assembly, may selectively inhibit the pathogen growth in vivo and represent a potential target for antifungal therapy.

3.
Microbiol Spectr ; : e0028323, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37676031

RESUMO

Several P1B-type ATPases are important Cd2+/Cu2+ pumps in Aspergillus species, and they are tightly associated with the heavy metal stress tolerance of these ascomycetous fungi. To better understand the roles of the two P1B-type ATPases, Aspergillus nidulans CrpA Cd2+/Cu2+ pump (orthologue of the Candida albicans Crp1 Cd2+/Cu2+ pump) and Aspergillus fumigatus PcaA Cd2+ pump (orthologue of the Saccharomyces cerevisiae Pca1 Cd2+ pump), we have generated individual mutants and characterized their heavy metal susceptibilities. The deletion of CrpA in A. nidulans has led to the increased sensitivity of the fungus to stresses induced by Zn2+, Fe2+, or the combination of oxidative-stress-inducing menadione sodium bisulfite and Fe3+. Heterologous expression of A. fumigatus PcaA in the S. cerevisiae pca1 deletion mutant has resulted in enhanced tolerance of the yeast to stresses elicited by Cd2+or Zn2+ but not by Fe2+/Fe3+ or Cu2+. Mammalian host immune defense can attack microbes by secreting Zn2+ or Cu2+, and the oxidative stress induced by host immune systems can also disturb metal (Cu2+, Fe2+, and Zn2+) homeostasis in microbes. In summary, PcaA and CrpA can protect fungal cells from these complex stresses that contribute to the virulence of the pathogenic Aspergillus species. Moreover, due to their presence on the fungal cell surface, these P1B-type ATPases may serve as a novel drug target in the future. IMPORTANCE Mammalian host immune defense disrupts heavy metal homeostasis of fungal pathogens. P1B-type ATPase of Aspergillus fumigatus and Aspergillus nidulans may help to cope with this stress and serve as virulence traits. In our experiments, both A. nidulans Cd2+/Cu2+ pump CrpA and A. fumigatus Cd2+ pump PcaA protected fungal cells from toxic Zn2+, and CrpA also decreased Fe2+ susceptibility most likely indirectly. In addition, CrpA protected cells against the combined stress induced by the oxidative stressor menadione and Fe3+. Since P1B-type ATPases are present on the fungal cell surface, these proteins may serve as a novel drug target in the future.

4.
Res Microbiol ; 173(8): 103969, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35863560

RESUMO

The growth of 14 Aspergillus strains belonging to nine species was studied under combinatorial deferriprone - H2O2 (iron-chelation - oxidative) stress. When deferriprone pretreated mycelia were subjected to even a weak oxidative stress, the growth inhibitory effect of iron-chelation stress was enhanced in 10 out of 14 strains. In contrast, oxidative stress pretreatment of conidia increased their deferriprone tolerance in 10 strains. Applying iron-chelators as antifungal agent or adjuvant can enhance the efficiency of the combinatorial iron withdrawal - oxidative stress strategy of our immune system and may reduce the survival of conidia escaped from the oxidative attack of pulmonary macrophages.


Assuntos
Aspergillus fumigatus , Peróxido de Hidrogênio , Peróxido de Hidrogênio/farmacologia , Aspergillus , Esporos Fúngicos , Ferro/farmacologia , Estresse Oxidativo
5.
Appl Microbiol Biotechnol ; 106(11): 3895-3912, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35599256

RESUMO

While phototoxicity can be a useful therapeutic modality not only for eliminating malignant cells but also in treating fungal infections, mycologists aiming to observe morphological changes or molecular events in fungi, especially when long observation periods or high light fluxes are warranted, encounter problems owed to altered regulatory pathways or even cell death caused by various photosensing mechanisms. Consequently, the ever expanding repertoire of visible fluorescent protein toolboxes and high-resolution microscopy methods designed to investigate fungi in vitro and in vivo need to comply with an additional requirement: to decrease the unwanted side effects of illumination. In addition to optimizing exposure, an obvious solution is red-shifted illumination, which, however, does not come without compromises. This review summarizes the interactions of fungi with light and the various molecular biology and technology approaches developed for exploring their functions on the molecular, cellular, and in vivo microscopic levels, and outlines the progress towards reducing phototoxicity through applying far-red and near-infrared light. KEY POINTS: • Fungal biological processes alter upon illumination, also under the microscope • Red shifted fluorescent protein toolboxes decrease interference by illumination • Innovations like two-photon, lightsheet, and near IR microscopy reduce phototoxicity.


Assuntos
Luz , Fótons , Corantes , Fungos , Microscopia de Fluorescência/métodos
6.
Microorganisms ; 9(7)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361869

RESUMO

Cadmium is an exceptionally toxic industrial and environmental pollutant classified as a human carcinogen. In order to provide insight into how we can keep our environment safe from cadmium contamination and prevent the accumulation of it in the food chain, we aim to elucidate how Aspergillus nidulans, one of the most abundant fungi in soil, survives and handles cadmium stress. As AtfA is the main transcription factor governing stress responses in A. nidulans, we examined genome-wide expression responses of wild-type and the atfA null mutant exposed to CdCl2. Both strains showed up-regulation of the crpA Cu2+/Cd2+ pump gene and AN7729 predicted to encode a putative bis(glutathionato)-cadmium transporter, and transcriptional changes associated with elevated intracellular Cys availability leading to the efficient adaptation to Cd2+. Although the deletion of atfA did not alter the cadmium tolerance of the fungus, the cadmium stress response of the mutant differed from that of a reference strain. Promoter and transcriptional analyses of the "Phospho-relay response regulator" genes suggest that the AtfA-dependent regulation of these genes can be relevant in this phenomenon. We concluded that the regulatory network of A. nidulans has a high flexibility allowing the fungus to adapt efficiently to stress both in the presence and absence of this important transcription factor.

7.
Appl Environ Microbiol ; 87(9)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33637571

RESUMO

Glutathione (GSH) is an abundant tripeptide that plays a crucial role in shielding cellular macromolecules from various reactive oxygen and nitrogen species in fungi. Understanding GSH metabolism is of vital importance for deciphering redox regulation in these microorganisms. In the present study, to better understand the GSH metabolism in filamentous fungi, we investigated functions of the dugB and dugC genes in the model fungus Aspergillus nidulans These genes are orthologues of dug2 and dug3, which are involved in cytosolic GSH degradation in Saccharomyces cerevisiae The deletion of dugB, dugC, or both resulted in a moderate increase in the GSH content in mycelia grown on glucose, reduced conidium production, and disturbed sexual development. In agreement with these observations, transcriptome data showed that genes encoding mitogen-activated protein (MAP) kinase pathway elements (e.g., steC, sskB, hogA, and mkkA) or regulatory proteins of conidiogenesis and sexual differentiation (e.g., flbA, flbC, flbE, nosA, rosA, nsdC, and nsdD) were downregulated in the ΔdugB ΔdugC mutant. Deletion of dugB and/or dugC slowed the depletion of GSH pools during carbon starvation. It also reduced accumulation of reactive oxygen species and decreased autolytic cell wall degradation and enzyme secretion but increased sterigmatocystin formation. Transcriptome data demonstrated that enzyme secretions-in contrast to mycotoxin production-were controlled at the posttranscriptional level. We suggest that GSH connects starvation and redox regulation to each other: cells utilize GSH as a stored carbon source during starvation. The reduction of GSH content alters the redox state, activating regulatory pathways responsible for carbon starvation stress responses.IMPORTANCE Glutathione (GSH) is a widely distributed tripeptide in both eukaryotes and prokaryotes. Owing to its very low redox potential, antioxidative character, and high intracellular concentration, GSH profoundly shapes the redox status of cells. Our observations suggest that GSH metabolism and/or the redox status of cells plays a determinative role in several important aspects of fungal life, including oxidative stress defense, protein secretion, and secondary metabolite production (including mycotoxin formation), as well as sexual and asexual differentiations. We demonstrated that even a slightly elevated GSH level can substantially disturb the homeostasis of fungi. This information could be important for development of new GSH-producing strains or for any biotechnologically relevant processes where the GSH content, antioxidant capacity, or oxidative stress tolerance of a fungal strain is manipulated.


Assuntos
Aspergillus nidulans/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Proteínas Fúngicas/metabolismo , Glutationa/metabolismo , Peptídeo Hidrolases/metabolismo , Aspergillus nidulans/genética , Carbono-Nitrogênio Ligases/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Mutação , Peptídeo Hidrolases/genética , Transcriptoma
8.
Life (Basel) ; 10(12)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352712

RESUMO

The polyphyletic group of black fungi within the Ascomycota (Arthoniomycetes, Dothideomycetes, and Eurotiomycetes) is ubiquitous in natural and anthropogenic habitats. Partly because of their dark, melanin-based pigmentation, black fungi are resistant to stresses including UV- and ionizing-radiation, heat and desiccation, toxic metals, and organic pollutants. Consequently, they are amongst the most stunning extremophiles and poly-extreme-tolerant organisms on Earth. Even though ca. 60 black fungal genomes have been sequenced to date, [mostly in the family Herpotrichiellaceae (Eurotiomycetes)], the class Dothideomycetes that hosts the largest majority of extremophiles has only been sparsely sampled. By sequencing up to 92 species that will become reference genomes, the "Shed light in The daRk lineagES of the fungal tree of life" (STRES) project will cover a broad collection of black fungal diversity spread throughout the Fungal Tree of Life. Interestingly, the STRES project will focus on mostly unsampled genera that display different ecologies and life-styles (e.g., ant- and lichen-associated fungi, rock-inhabiting fungi, etc.). With a resequencing strategy of 10- to 15-fold depth coverage of up to ~550 strains, numerous new reference genomes will be established. To identify metabolites and functional processes, these new genomic resources will be enriched with metabolomics analyses coupled with transcriptomics experiments on selected species under various stress conditions (salinity, dryness, UV radiation, oligotrophy). The data acquired will serve as a reference and foundation for establishing an encyclopedic database for fungal metagenomics as well as the biology, evolution, and ecology of the fungi in extreme environments.

9.
J Basic Microbiol ; 58(11): 957-967, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30168857

RESUMO

The physiological background of the unusually high cadmium tolerance (MIC50 > 2 mM) of Aspergillus fumigatus Af293 was investigated. The cadmium tolerance of the tested environmental and clinical A. fumigatus strains varied over a wide range (0.25 mM < MIC50 < 1 mM). Only the Af293 strain showed a MIC50 value of >2 mM, and this phenotype was accompanied by increased in vivo virulence in mice. A strong correlation was found between the cadmium tolerance and the transcription of the pcaA gene, which encodes a putative cadmium efflux pump. The cadmium tolerance also correlated with the iron tolerance and the extracellular siderophore production of the strains. In addition to these findings, Af293 did not show the synergism between iron toxicity and cadmium toxicity that was detected in the other strains. Based on these results, we suggest that the primary function of PcaA should be acting as a ferrous iron pump and protecting cells from iron overload. Nevertheless, the heterologous expression of pcaA may represent an attractive strain improvement strategy to construct fungal strains for use in biosorption or biomining processes or to prevent accumulation of this toxic metal in crops.


Assuntos
Aspergillus fumigatus/fisiologia , Cádmio/metabolismo , Adenosina Trifosfatases/genética , Animais , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/patogenicidade , Cádmio/toxicidade , Proteínas de Transporte de Cátions/genética , Feminino , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Ferro/metabolismo , Ferro/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo/efeitos dos fármacos , Sideróforos/biossíntese , Transcrição Gênica , Virulência
10.
BMC Genomics ; 19(1): 357, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29747589

RESUMO

BACKGROUND: Aspergillus fumigatus has to cope with a combination of several stress types while colonizing the human body. A functional interplay between these different stress responses can increase the chances of survival for this opportunistic human pathogen during the invasion of its host. In this study, we shed light on how the H2O2-induced oxidative stress response depends on the iron available to this filamentous fungus, using transcriptomic analysis, proteomic profiles, and growth assays. RESULTS: The applied H2O2 treatment, which induced only a negligible stress response in iron-replete cultures, deleteriously affected the fungus under iron deprivation. The majority of stress-induced changes in gene and protein expression was not predictable from data coming from individual stress exposure and was only characteristic for the combination of oxidative stress plus iron deprivation. Our experimental data suggest that the physiological effects of combined stresses and the survival of the fungus highly depend on fragile balances between economization of iron and production of essential iron-containing proteins. One observed strategy was the overproduction of iron-independent antioxidant proteins to combat oxidative stress during iron deprivation, e.g. the upregulation of superoxide dismutase Sod1, the thioredoxin reductase Trr1, and the thioredoxin orthologue Afu5g11320. On the other hand, oxidative stress induction overruled iron deprivation-mediated repression of several genes. In agreement with the gene expression data, growth studies underlined that in A. fumigatus iron deprivation aggravates oxidative stress susceptibility. CONCLUSIONS: Our data demonstrate that studying stress responses under separate single stress conditions is not sufficient to understand how A. fumigatus adapts in a complex and hostile habitat like the human body. The combinatorial stress of iron depletion and hydrogen peroxide caused clear non-additive effects upon the stress response of A. fumigatus. Our data further supported the view that the ability of A. fumigatus to cause diseases in humans strongly depends on its fitness attributes and less on specific virulence factors. In summary, A. fumigatus is able to mount and coordinate complex and efficient responses to combined stresses like iron deprivation plus H2O2-induced oxidative stress, which are exploited by immune cells to kill fungal pathogens.


Assuntos
Aspergillus fumigatus/metabolismo , Peróxido de Hidrogênio/farmacologia , Ferro/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/genética , Aspergillus fumigatus/crescimento & desenvolvimento , Cromatografia Líquida , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno , Proteômica , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas em Tandem , Transcriptoma
11.
Acta Microbiol Immunol Hung ; 64(3): 255-272, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28263103

RESUMO

Yeast protein sequence-based homology search for glutathione (GSH) metabolic enzymes and GSH transporters demonstrated that Aspergillus nidulans has a robust GSH uptake and metabolic system with several paralogous genes. In wet laboratory experiments, two key genes of GSH metabolism, gcsA, and glrA, encoding γ-l-glutamyl-l-cysteine synthetase and glutathione reductase, respectively, were deleted. The gene gcsA was essential, and the ΔgcsA mutant required GSH supplementation at considerably higher concentration than the Saccharomyces cerevisiae gsh1 mutant (8-10 mmol l-1 vs. 0.5 µmol l-1). In addition to some functions known previously, both genes were important in the germination of conidiospores, and both gene deletion strains required the addition of extra GSH to reach wild-type germination rates in liquid cultures. Nevertheless, the supplementation of cultures with 10 mmol l-1 GSH was toxic for the control and ΔglrA strains especially during vegetative growth, which should be considered in future development of high GSH-producer fungal strains. Importantly, the ΔglrA strain was characterized by increased sensitivity toward a wide spectrum of osmotic, cell wall integrity and antimycotic stress conditions in addition to previously reported temperature and oxidative stress sensitivities. These novel phenotypes underline the distinguished functions of GSH and GSH metabolic enzymes in the stress responses of fungi.


Assuntos
Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Glutationa/metabolismo , Simulação por Computador , Proteínas Fúngicas/genética , Modelos Biológicos , Mutação , Esporos Fúngicos/fisiologia , Estresse Fisiológico , Temperatura
12.
Genome Biol ; 18(1): 28, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28196534

RESUMO

BACKGROUND: The fungal genus Aspergillus is of critical importance to humankind. Species include those with industrial applications, important pathogens of humans, animals and crops, a source of potent carcinogenic contaminants of food, and an important genetic model. The genome sequences of eight aspergilli have already been explored to investigate aspects of fungal biology, raising questions about evolution and specialization within this genus. RESULTS: We have generated genome sequences for ten novel, highly diverse Aspergillus species and compared these in detail to sister and more distant genera. Comparative studies of key aspects of fungal biology, including primary and secondary metabolism, stress response, biomass degradation, and signal transduction, revealed both conservation and diversity among the species. Observed genomic differences were validated with experimental studies. This revealed several highlights, such as the potential for sex in asexual species, organic acid production genes being a key feature of black aspergilli, alternative approaches for degrading plant biomass, and indications for the genetic basis of stress response. A genome-wide phylogenetic analysis demonstrated in detail the relationship of the newly genome sequenced species with other aspergilli. CONCLUSIONS: Many aspects of biological differences between fungal species cannot be explained by current knowledge obtained from genome sequences. The comparative genomics and experimental study, presented here, allows for the first time a genus-wide view of the biological diversity of the aspergilli and in many, but not all, cases linked genome differences to phenotype. Insights gained could be exploited for biotechnological and medical applications of fungi.


Assuntos
Adaptação Biológica , Aspergillus/classificação , Aspergillus/genética , Biodiversidade , Genoma Fúngico , Genômica , Aspergillus/metabolismo , Biomassa , Carbono/metabolismo , Biologia Computacional/métodos , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Metilação de DNA , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Genômica/métodos , Humanos , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Família Multigênica , Oxirredutases/metabolismo , Filogenia , Plantas/metabolismo , Plantas/microbiologia , Metabolismo Secundário/genética , Transdução de Sinais , Estresse Fisiológico/genética
13.
J Basic Microbiol ; 56(10): 1071-1079, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27272511

RESUMO

Horseradish essential oil (HREO; a natural mixture of different isothiocyanates) had strong fungicide effect against Candida albicans both in volatile and liquid phase. In liquid phase this antifungal effect was more significant than those of its main components allyl, and 2-phenylethyl isothiocyanate. HREO, at sublethal concentration, induced oxidative stress which was characterized with elevated superoxide content and up-regulated specific glutathione reductase, glutathione peroxidase, catalase and superoxide dismutase activities. Induction of specific glutathione S-transferase activities as marker of glutathione (GSH) dependent detoxification was also observed. At higher concentration, HREO depleted the GSH pool, increased heavily the superoxide production and killed the cells rapidly. HREO and the GSH pool depleting agent, 1-chlore-2,4-dinitrobenzene showed strong synergism when they were applied together to kill C. albicans cells. Based on all these, we assume that GSH metabolism protects fungi against isothiocyanates.


Assuntos
Antifúngicos/farmacologia , Armoracia/metabolismo , Candida albicans/efeitos dos fármacos , Glutationa/metabolismo , Isotiocianatos/farmacologia , Óleos Voláteis/farmacologia , Catalase/metabolismo , Dinitroclorobenzeno/farmacologia , Sinergismo Farmacológico , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo
14.
Acta Biol Hung ; 66(2): 242-5, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26081279

RESUMO

Relative transcriptions of Aspergillus nidulans dug1-3 (orthologes of Saccharomyces cerevisiae DUG - deficient in utilization of glutathione - pathway genes) and ggtA encoding γ-glutamyl transpeptidase were studied under conditions inducing glutathione degradation. GgtA was induced in all cases when glutathione levels decreased, but addition of yeast extract, which moderated glutathione degradation, enhanced its induction. Although dug2 showed constitutive transcription, dug1 and dug3 were induced by carbon and nitrogen starvation and yeast extract did not caused significant changes in their relative transcription. The in silico reconstructed DUG pathway of A. nidulans is a promising candidate for cytosolic GSH degradation induced by carbon/nitrogen stress.


Assuntos
Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Glutationa/metabolismo , gama-Glutamiltransferase/metabolismo , Aspergillus nidulans/genética , Proteínas Fúngicas/genética , Glutationa/genética , gama-Glutamiltransferase/genética
15.
Arch Microbiol ; 197(2): 285-97, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25519188

RESUMO

Aspergillus nidulans exhibited high γ-glutamyl transpeptidase (γGT) activity in both carbon-starved and carbon-limited cultures. Glucose repressed, but casein peptone increased γGT production. Null mutation of creA did not influence γGT formation, but the functional meaB was necessary for the γGT induction. Deletion of the AN10444 gene (ggtA) completely eliminated the γGT activity, and the mRNA levels of ggtA showed strong correlation with the observed γGT activities. While ggtA does not contain a canonical signal sequence, the γGT activity was detectable both in the fermentation broth and in the hyphae. Deletion of the ggtA gene did not prevent the depletion of glutathione observed in carbon-starved and carbon-limited cultures. Addition of casein peptone to carbon-starved cultures lowered the formation of reactive species (RS). Deletion of ggtA could hinder this decrease and resulted in elevated RS formation. This effect of γGT on redox homeostasis may explain the reduced cleistothecia formation of ΔggtA strains in surface cultures.


Assuntos
Aspergillus nidulans/enzimologia , gama-Glutamiltransferase/metabolismo , Aspergillus nidulans/genética , Carbono/metabolismo , Ativação Enzimática/genética , Deleção de Genes , Genes Fúngicos/genética , Glucose/metabolismo , Glutationa/metabolismo , Homeostase , Hifas/enzimologia , Oxirredução , gama-Glutamiltransferase/genética
16.
Folia Microbiol (Praha) ; 56(4): 353-9, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21818608

RESUMO

The abc1(-)/coq8(-) gene deletion respiratory-deficient mutant NBp17 of fission yeast Schizosaccharomyces pombe displayed a phenotypic fermentation pattern with enhanced production of glycerol and acetate, and also possessed oxidative stress-sensitive phenotypes to H(2)O(2), menadione, tBuOOH, Cd(2+), and chromate in comparison with its parental respiratory-competent strain HNT. As a consequence of internal stress-inducing mutation, adaptation processes to restore the redox homeostasis of mutant NBp17 cells were detected in minimal glucose medium. Mutant NBp17 produced significantly increased amounts of O(2)•- and H(2)O(2) as a result of the decreased internal glutathione concentration and the only slightly increased glutathione reductase activity. The Cr(VI) reduction capacity and hence the •OH production ability were decreased. The mutant cells demonstrated increased specific activities of superoxide dismutases and glutathione reductase (but not catalase) to detoxify at least partially the overproduction of reactive oxygen species. All these features may be explained by the decreased redox capacity of the mutant cells. Most notably, mutant NBp17 hyperaccumulated yellow CdS.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Cádmio/metabolismo , Deleção de Genes , Glutationa/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Ubiquinona/genética , Testes de Sensibilidade Microbiana , Oxidantes/farmacologia , Oxirredução , Peróxidos/metabolismo , Fenótipo , Schizosaccharomyces/efeitos dos fármacos
17.
Folia Microbiol (Praha) ; 56(5): 381-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21858538

RESUMO

Polyphasic characterization of the echinocandin B producer Aspergillus nidulans var. roseus ATCC 58397 strain was carried out to elucidate its taxonomical status. According to its carbon source utilization and secondary metabolite spectrum as well as the partial ß-tubulin, calmodulin, and γ-actin gene sequences, A. nidulans var. roseus belongs to the Emericella rugulosa species. Auxotroph mutants of A. nidulans var. roseus ATCC 58397 and E. rugulosa CBS 171.71 and CBS 133.60 formed stable heterokaryons on minimal medium with several A. nidulans strains, and in the case of A. nidulans var. roseus, even cleistothecia were developed.


Assuntos
Actinas/genética , Aspergillus nidulans/genética , Calmodulina/genética , Equinocandinas/biossíntese , Emericella/genética , Proteínas Fúngicas/biossíntese , Tubulina (Proteína)/genética , Actinas/química , Actinas/metabolismo , Aspergillus nidulans/classificação , Aspergillus nidulans/metabolismo , Calmodulina/química , Calmodulina/metabolismo , Cruzamentos Genéticos , Emericella/classificação , Emericella/metabolismo , Fermentação , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Técnicas de Tipagem Micológica , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Esterigmatocistina/biossíntese , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
18.
Mol Genet Genomics ; 283(3): 289-303, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20131067

RESUMO

The aim of the study was to demonstrate that the bZIP-type transcription factor AtfA regulates different types of stress responses in Aspergillus nidulans similarly to Atf1, the orthologous 'all-purpose' transcription factor of Schizosaccharomyces pombe. Heterologous expression of atfA in a S. pombe Deltaatf1 mutant restored the osmotic stress tolerance of fission yeast in surface cultures to the same level as recorded in complementation studies with the atf1 gene, and a partial complementation of the osmotic and oxidative-stress-sensitive phenotypes was also achieved in submerged cultures. AtfA is therefore a true functional ortholog of fission yeast's Atf1. As demonstrated by RT-PCR experiments, elements of both oxidative (e.g. catalase B) and osmotic (e.g. glycerol-3-phosphate dehydrogenase B) stress defense systems were transcriptionally regulated by AtfA in a stress-type-specific manner. Deletion of atfA resulted in oxidative-stress-sensitive phenotypes while the high-osmolarity stress sensitivity of the fungus was not affected significantly. In A. nidulans, the glutathione/glutathione disulfide redox status of the cells as well as apoptotic cell death and autolysis seemed to be controlled by regulatory elements other than AtfA. In conclusion, the orchestrations of stress responses in the aspergilli and in fission yeast share several common features, but further studies are needed to answer the important question of whether a fission yeast-like core environmental stress response also operates in the euascomycete genus Aspergillus.


Assuntos
Fatores Ativadores da Transcrição/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores Ativadores da Transcrição/genética , Aspergillus nidulans/enzimologia , Sequência de Bases , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genótipo , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Cinética , Oxirredução , Estresse Oxidativo/genética , Fenótipo , Proteínas/genética , Proteínas/metabolismo , RNA Fúngico/genética , RNA Mensageiro/genética , DNA Polimerase Dirigida por RNA/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
19.
FEMS Yeast Res ; 6(8): 1140-8, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17156011

RESUMO

Lovastatin inhibited the growth of Candida albicans in a fungistatic way. Although it triggers apoptosis in a great variety of eukaryotic cells, including many tumour cell lines, lovastatin failed to provoke apoptotic events in this human pathogen. The fungistatic behaviour of this statin might arise from its negative influence on membrane fluidity. Because yeast-->pseudomycelium and hyphae morphogenetic transitions took place under exposure to lovastatin morphogenetic switch and apoptotic cell death must be regulated independently in C. albicans.


Assuntos
Antifúngicos/farmacologia , Apoptose/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Lovastatina/farmacologia , Candida albicans/crescimento & desenvolvimento , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Fragmentação do DNA/efeitos dos fármacos , DNA Fúngico/efeitos dos fármacos , Humanos
20.
BMC Genomics ; 6: 182, 2005 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-16368011

RESUMO

BACKGROUND: In addition to their cytotoxic nature, reactive oxygen species (ROS) are also signal molecules in diverse cellular processes in eukaryotic organisms. Linking genome-wide transcriptional changes to cellular physiology in oxidative stress-exposed Aspergillus nidulans cultures provides the opportunity to estimate the sizes of peroxide (O2(2-)), superoxide (O2*-) and glutathione/glutathione disulphide (GSH/GSSG) redox imbalance responses. RESULTS: Genome-wide transcriptional changes triggered by diamide, H2O2 and menadione in A. nidulans vegetative tissues were recorded using DNA microarrays containing 3533 unique PCR-amplified probes. Evaluation of LOESS-normalized data indicated that 2499 gene probes were affected by at least one stress-inducing agent. The stress induced by diamide and H2O2 were pulse-like, with recovery after 1 h exposure time while no recovery was observed with menadione. The distribution of stress-responsive gene probes among major physiological functional categories was approximately the same for each agent. The gene group sizes solely responsive to changes in intracellular O2(2-), O2*- concentrations or to GSH/GSSG redox imbalance were estimated at 7.7, 32.6 and 13.0 %, respectively. Gene groups responsive to diamide, H2O2 and menadione treatments and gene groups influenced by GSH/GSSG, O2(2-) and O2*- were only partly overlapping with distinct enrichment profiles within functional categories. Changes in the GSH/GSSG redox state influenced expression of genes coding for PBS2 like MAPK kinase homologue, PSK2 kinase homologue, AtfA transcription factor, and many elements of ubiquitin tagging, cell division cycle regulators, translation machinery proteins, defense and stress proteins, transport proteins as well as many enzymes of the primary and secondary metabolisms. Meanwhile, a separate set of genes encoding transport proteins, CpcA and JlbA amino acid starvation-responsive transcription factors, and some elements of sexual development and sporulation was ROS responsive. CONCLUSION: The existence of separate O2(2-), O2*- and GSH/GSSG responsive gene groups in a eukaryotic genome has been demonstrated. Oxidant-triggered, genome-wide transcriptional changes should be analyzed considering changes in oxidative stress-responsive physiological conditions and not correlating them directly to the chemistry and concentrations of the oxidative stress-inducing agent.


Assuntos
Aspergillus nidulans/genética , Diamida/farmacologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genoma Fúngico , Peróxido de Hidrogênio/farmacologia , Transcrição Gênica/efeitos dos fármacos , Vitamina K 3/farmacologia , Aspergillus nidulans/efeitos dos fármacos , Aspergillus nidulans/fisiologia , Glutationa/farmacologia , Dissulfeto de Glutationa/farmacologia , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA