Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(47): eabq4882, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36427309

RESUMO

Patients with glioblastoma (GBM) have limited options and require novel approaches to treatment. Here, we studied and deployed nonfreezing "cytostatic" hypothermia to stunt GBM growth. This growth-halting method contrasts with ablative, cryogenic hypothermia that kills both neoplastic and infiltrated healthy tissue. We investigated degrees of hypothermia in vitro and identified a cytostatic window of 20° to 25°C. For some lines, 18 hours/day of cytostatic hypothermia was sufficient to halt division in vitro. Next, we fabricated an experimental tool to test local cytostatic hypothermia in two rodent GBM models. Hypothermia more than doubled median survival, and all rats that successfully received cytostatic hypothermia survived their study period. Unlike targeted therapeutics that are successful in preclinical models but fail in clinical trials, cytostatic hypothermia leverages fundamental physics that influences biology broadly. It is a previously unexplored approach that could provide an additional option to patients with GBM by halting tumor growth.


Assuntos
Citostáticos , Glioblastoma , Hipotermia Induzida , Hipotermia , Ratos , Animais , Ratos Sprague-Dawley , Hipotermia Induzida/métodos
2.
Biomaterials ; 266: 120419, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33038594

RESUMO

Traumatic brain injury (TBI) triggers multiple biochemical and cellular processes that exacerbate brain tissue damage through a secondary injury. Therapies that prevent or limit the evolution of secondary injury could significantly reduce the neurological deficits associated with TBI. Mesenchymal stem cell (MSC) transplantation after TBI can ameliorate neurological deficits by modulating inflammation and enhancing the expression of neurotrophic factors. However, transplanted MSCs can be actively rejected by host immune responses, such as those mediated by cytotoxic CD8+ T cells, thereby limiting their therapeutic efficacy. Here, we designed an agarose hydrogel that releases Fas ligand (FasL), a protein that can induce apoptosis of cytotoxic CD8+ T cells. We studied the immunosuppressive effect of this hydrogel near the allogeneic MSC transplantation site and its impact on the survival of transplanted MSCs in the injured brain. Agarose-FasL hydrogels locally reduced the host cytotoxic CD8+ T cell population and enhanced the survival of allogeneic MSCs transplanted near the injury site. Furthermore, the expression of crucial neurotrophic factors was elevated in the injury penumbra, suggesting an enhanced therapeutic effect of MSCs. These results suggest that the development of immunosuppressive hydrogels for stem cell delivery can enhance the benefits of stem cell therapy for TBI.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Encéfalo , Linfócitos T CD8-Positivos , Hidrogéis
3.
J Neuroinflammation ; 17(1): 197, 2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32563258

RESUMO

BACKGROUND: Appropriately modulating inflammation after traumatic brain injury (TBI) may prevent disabilities for the millions of those inflicted annually. In TBI, cellular mediators of inflammation, including macrophages and microglia, possess a range of phenotypes relevant for an immunomodulatory therapeutic approach. It is thought that early phenotypic modulation of these cells will have a cascading healing effect. In fact, an anti-inflammatory, "M2-like" macrophage phenotype after TBI has been associated with neurogenesis, axonal regeneration, and improved white matter integrity (WMI). There already exist clinical trials seeking an M2-like bias through mesenchymal stem/stromal cells (MSCs). However, MSCs do not endogenously synthesize key signals that induce robust M2-like phenotypes such as interleukin-4 (IL-4). METHODS: To enrich M2-like macrophages in a clinically relevant manner, we augmented MSCs with synthetic IL-4 mRNA to transiently express IL-4. These IL-4 expressing MSCs (IL-4 MSCs) were characterized for expression and functionality and then delivered in a modified mouse TBI model of closed head injury. Groups were assessed for functional deficits and MR imaging. Brain tissue was analyzed through flow cytometry, multi-plex ELISA, qPCR, histology, and RNA sequencing. RESULTS: We observed that IL-4 MSCs indeed induce a robust M2-like macrophage phenotype and promote anti-inflammatory gene expression after TBI. However, here we demonstrate that acute enrichment of M2-like macrophages did not translate to improved functional or histological outcomes, or improvements in WMI on MR imaging. To further understand whether dysfunctional pathways underlie the lack of therapeutic effect, we report transcriptomic analysis of injured and treated brains. Through this, we discovered that inflammation persists despite acute enrichment of M2-like macrophages in the brain. CONCLUSION: The results demonstrate that MSCs can be engineered to induce a stronger M2-like macrophage response in vivo. However, they also suggest that acute enrichment of only M2-like macrophages after diffuse TBI cannot orchestrate neurogenesis, axonal regeneration, or improve WMI. Here, we also discuss our modified TBI model and methods to assess severity, behavioral studies, and propose that IL-4 expressing MSCs may also have relevance in other cavitary diseases or in improving biomaterial integration into tissues.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Interleucina-4/metabolismo , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Modelos Animais de Doenças , Inflamação/metabolismo , Masculino , Camundongos , Microglia/metabolismo
4.
Cureus ; 10(3): e2284, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29740523

RESUMO

Introduction The apparent diffusion coefficient (ADC) sequence is based on the diffusion properties of water molecules within tissues and correlates with tissue cellularity. ADC may have a role in predicting tumor grade for gliomas, and may in turn assist in identifying tumor biopsy sites. The purpose of this investigation was to assess the competence of preoperative ADC values in predicting tumor grades. Methods This was a retrospective investigation. We calculated the ADC values in the areas of greatest restriction in solid tumor components, and we recorded the pattern of contrast enhancement. Pathology reports masked to the imaging results were reviewed independently. We calculated the differences in the mean values of different tumor grades and high-grade and low-grade gliomas. A receiver operator curve (ROC) analysis assessed the predictive potential of ADC values for low-grade gliomas. Results Forty-eight cases of glioma were included in our study. We noted a statistically significant difference in the lowest mean ADC values for the tumor regions of Grade IV lesions (333.83 ± 295.47) compared with Grade I lesions (653.20 ± 145.07). On ROC analysis, we noted an area under the curve (AUC) of 0.80 for the lowest ADC value in the whole tumor region, which was a predictor of low-grade glioma with 95 % confidence interval (CI) of 0.675-0.926. The sensitivity of the lowest ADC value was 84.5% for high-grade lesions. Conclusion Given our findings that the means of the lowest ADC value are significantly different between low and high-grade gliomas with an AUC of 0.80 for ADC as a predictor of low-grade lesions and a sensitivity of 84.5% for high-grade lesions, ADC values contain some predictive properties of tumor grading. ADC values may be a valuable parameter in the assessment and treatment of tumors.

5.
Biomaterials ; 142: 52-61, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28727998

RESUMO

Early recruitment of non-classical monocytes and their macrophage derivatives is associated with augmented tissue repair and improved integration of biomaterial constructs. A promising therapeutic approach to recruit these subpopulations is by elevating local concentrations of chemoattractants such as fractalkine (FKN, CX3CL1). However, delivering recombinant or purified proteins is not ideal due to their short half-lives, suboptimal efficacy, immunogenic potential, batch variabilities, and cost. Here we report an approach to enrich endogenous FKN, obviating the need for delivery of exogenous proteins. In this study, modified FKN-binding-aptamers are integrated with poly(ethylene glycol) diacrylate to form aptamer-functionalized hydrogels ("aptagels") that localize, dramatically enrich and passively release FKN in vitro for at least one week. Implantation in a mouse model of excisional skin injury demonstrates that aptagels enrich endogenous FKN and stimulate significant local increases in Ly6CloCX3CR1hi non-classical monocytes and CD206+ M2-like macrophages. The results demonstrate that orchestrators of inflammation can be manipulated without delivery of foreign proteins or cells and FKN-aptamer functionalized biomaterials may be a promising approach to recruit anti-inflammatory subpopulations to sites of injury. Aptagels are readily synthesized, highly customizable and could combine different aptamers to treat complex diseases in which regulation or enrichment of multiple proteins may be therapeutic.


Assuntos
Aptâmeros de Peptídeos/farmacologia , Quimiocina CX3CL1/farmacologia , Hidrogéis/farmacologia , Inflamação/patologia , Animais , Receptor 1 de Quimiocina CX3C/metabolismo , Movimento Celular/efeitos dos fármacos , Humanos , Cinética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Ressonância de Plasmônio de Superfície , Imagem com Lapso de Tempo
6.
BMJ Case Rep ; 20142014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24759603

RESUMO

We present a case of congenital malignant melanoma of the scalp in a neonate. The child was born through caesarean section with a swelling, the size of a tennis ball, on the posterior scalp. At presentation to the clinic at 25 days after birth, the swelling had significantly increased in size and ulcerated. An excision was carried out but, because of extensive haemorrhage and haemodynamic instability, the procedure was limited to subtotal resection. Later on, completion of the excision and flap coverage of the wound were performed. After an initial stable course of a few months, the child came back with local recurrence. A re-excision was planned but the child developed pneumonia resulting in sepsis leading to the demise of the child. The report adds to the literature by describing a rare entity and challenges of managing large vascular scalp lesions with complete excision and defect coverage.


Assuntos
Neoplasias de Cabeça e Pescoço/congênito , Melanoma/congênito , Couro Cabeludo , Neoplasias Cutâneas/congênito , Cisto Dermoide/diagnóstico , Diagnóstico Diferencial , Evolução Fatal , Neoplasias de Cabeça e Pescoço/diagnóstico , Neoplasias de Cabeça e Pescoço/cirurgia , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Melanoma/diagnóstico , Melanoma/cirurgia , Recidiva Local de Neoplasia , Couro Cabeludo/cirurgia , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/cirurgia , Retalhos Cirúrgicos , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA