Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 8(16): e2100693, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34189857

RESUMO

Influenza infections cause several million cases of severe respiratory illness, hospitalizations, and hundreds of thousands of deaths globally. Secondary infections are a leading cause of influenza's high morbidity and mortality, and significantly factored into the severity of the 1918, 1968, and 2009 pandemics. Furthermore, there is an increased incidence of other respiratory infections even in vaccinated individuals during influenza season. Putative mechanisms responsible for vaccine failures against influenza as well as other respiratory infections during influenza season are investigated. Peripheral blood mononuclear cells (PBMCs) are used from influenza vaccinated individuals to assess antigen-specific responses to influenza, measles, and varicella. The observations made in humans to a mouse model to unravel the mechanism is confirmed and extended. Infection with influenza virus suppresses an ongoing adaptive response to vaccination against influenza as well as other respiratory pathogens, i.e., Adenovirus and Streptococcus pneumoniae by preferentially infecting and killing activated lymphocytes which express elevated levels of sialic acid receptors. These findings propose a new mechanism for the high incidence of secondary respiratory infections due to bacteria and other viruses as well as vaccine failures to influenza and other respiratory pathogens even in immune individuals due to influenza viral infections.


Assuntos
Imunidade Adaptativa/imunologia , Influenza Humana/imunologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C
2.
J Virol ; 92(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29997203

RESUMO

Human immunodeficiency virus type 1 (HIV-1) infection often arises from a single transmitted/founder (TF) viral variant among a large pool of viruses in the quasispecies in the transmitting partner. TF variants are typically nondominant in blood and genital secretions, indicating that they have unique traits. The plasmacytoid dendritic cell (pDC) is the primary alpha interferon (IFN-α)-producing cell in response to viral infections and is rapidly recruited to the female genital tract upon exposure to HIV-1. The impact of pDCs on transmission is unknown. We investigated whether evasion of pDC responses is a trait of TF viruses. pDCs from healthy donors were stimulated in vitro with a panel of 20 HIV-1 variants, consisting of one TF variant and three nontransmitted (NT) variants each from five transmission-linked donor pairs, and secretion of IFN-α and tumor necrosis factor alpha (TNF-α) was measured by enzyme-linked immunosorbent assay (ELISA). No significant differences in cytokine secretion in response to TF and NT viruses were observed, despite a trend toward enhanced IFN-α and TNF-α production in response to TF viruses. NT viruses demonstrated polarization toward production of either IFN-α or TNF-α, indicating possible dysregulation. Also, for NT viruses, IFN-α secretion was associated with increased resistance of the virus to inactivation by IFN-α in vitro, suggesting in vivo evolution. Thus, TF viruses do not appear to preferentially subvert pDC activation compared to that with nontransmitted HIV-1 variants. pDCs may, however, contribute to the in vivo evolution of HIV-1.IMPORTANCE The plasmacytoid dendritic cell (pDC) is the first cell type recruited to the site of HIV-1 exposure; however, its contribution to the viral bottleneck in HIV-1 transmission has not been explored previously. We hypothesized that transmitted/founder viruses are able to avoid the pDC response. In this study, we used previously established donor pair-linked transmitted/founder and nontransmitted (or chronic) variants of HIV-1 to stimulate pDCs. Transmitted/founder HIV-1, instead of suppressing pDC responses, induced IFN-α and TNF-α secretion to levels comparable to those induced by viruses from the transmitting partner. We noted several unique traits of chronic viruses, including polarization between IFN-α and TNF-α production as well as a strong relationship between IFN-α secretion and the resistance of the virus to neutralization. These data rule out the possibility that TF viruses preferentially suppress pDCs in comparison to the pDC response to nontransmitted HIV variants. pDCs may, however, be important drivers of viral evolution in vivo.


Assuntos
Células Dendríticas/imunologia , Infecções por HIV/transmissão , HIV-1/imunologia , Interferon-alfa/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Adulto , Células Dendríticas/virologia , Feminino , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/patogenicidade , Interações Hospedeiro-Patógeno , Humanos , Interferon-alfa/imunologia , Masculino , Testes de Neutralização , Cultura Primária de Células , Fator de Necrose Tumoral alfa/imunologia , Vírion/imunologia , Vírion/patogenicidade
3.
J Immunol ; 193(11): 5626-36, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25348625

RESUMO

Despite progress toward understanding the correlates of protective T cell immunity in HIV infection, the optimal approach to Ag delivery by vaccination remains uncertain. We characterized two immunodominant CD8 T cell populations generated in response to immunization of BALB/c mice with a replication-deficient adenovirus serotype 5 vector expressing the HIV-derived Gag and Pol proteins at equivalent levels. The Gag-AI9/H-2K(d) epitope elicited high-avidity CD8 T cell populations with architecturally diverse clonotypic repertoires that displayed potent lytic activity in vivo. In contrast, the Pol-LI9/H-2D(d) epitope elicited motif-constrained CD8 T cell repertoires that displayed lower levels of physical avidity and lytic activity despite equivalent measures of overall clonality. Although low-dose vaccination enhanced the functional profiles of both epitope-specific CD8 T cell populations, greater polyfunctionality was apparent within the Pol-LI9/H-2D(d) specificity. Higher proportions of central memory-like cells were present after low-dose vaccination and at later time points. However, there were no noteworthy phenotypic differences between epitope-specific CD8 T cell populations across vaccine doses or time points. Collectively, these data indicate that the functional and phenotypic properties of vaccine-induced CD8 T cell populations are sensitive to dose manipulation, yet constrained by epitope specificity in a clonotype-dependent manner.


Assuntos
Vacinas contra a AIDS , Linfócitos T CD8-Positivos/imunologia , Epitopos Imunodominantes/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene pol do Vírus da Imunodeficiência Humana/metabolismo , Adenoviridae/genética , Animais , Linfócitos T CD8-Positivos/virologia , Células Cultivadas , Citotoxicidade Imunológica , Feminino , Vetores Genéticos , Antígenos H-2/metabolismo , Antígeno de Histocompatibilidade H-2D/metabolismo , Humanos , Epitopos Imunodominantes/genética , Memória Imunológica , Camundongos , Camundongos Endogâmicos BALB C , Vacinação , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene pol do Vírus da Imunodeficiência Humana/genética
4.
PLoS One ; 6(8): e23515, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21887264

RESUMO

Several lines of evidence suggest that HIV/SIV-specific CD8(+) T cells play a critical role in the control of viral replication. Recently we observed high levels of viremia in Indian rhesus macaques vaccinated with a segment of SIVmac239 Gag (Gag(45-269)) that were subsequently infected with SIVsmE660. These seven Mamu-A*01(+) animals developed CD8(+) T cell responses against an immunodominant epitope in Gag, GagCM9, yet failed to control virus replication. We carried out a series of immunological and virological assays to understand why these Gag-specific CD8(+) T cells could not control virus replication in vivo. GagCM9-specific CD8(+) T cells from all of the animals were multifunctional and were found in the colonic mucosa. Additionally, GagCM9-specific CD8(+) T cells accessed B cell follicles, the primary residence of SIV-infected cells in lymph nodes, with effector to target ratios between 20-250 GagCM9-specific CD8(+) T cells per SIV-producing cell. Interestingly, vaccinated animals had few public TCR clonotypes within the GagCM9-specific CD8(+) T cell population pre- and post-infection. The number of public TCR clonotypes expressed by GagCM9-specific CD8(+) T cells post-infection significantly inversely correlated with chronic phase viral load. It is possible that these seven animals failed to control viral replication because of the narrow TCR repertoire expressed by the GagCM9-specific CD8(+) T cell population elicited by vaccination and infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Produtos do Gene gag/imunologia , Epitopos Imunodominantes/imunologia , Macaca mulatta/virologia , Receptores de Antígenos de Linfócitos T/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Replicação Viral/imunologia , Sequência de Aminoácidos , Animais , Células Clonais , Produtos do Gene gag/química , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/imunologia , Epitopos Imunodominantes/química , Mucosa Intestinal/imunologia , Mucosa Intestinal/virologia , Linfonodos/imunologia , Linfonodos/virologia , Macaca mulatta/imunologia , Dados de Sequência Molecular , Mutação/genética , Receptores de Antígenos de Linfócitos T/química , Análise de Sequência de Proteína , Vacinação , Carga Viral/imunologia
5.
J Virol ; 85(7): 3683-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21270159

RESUMO

Different human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) vaccine vectors expressing the same viral antigens can elicit disparate T-cell responses. Within this spectrum, replicating variable vaccines, like SIVmac239Δnef, appear to generate particularly efficacious CD8(+) T-cell responses. Here, we sequenced T-cell receptor ß-chain (TRB) gene rearrangements from immunodominant Mamu-A 01-restricted Tat(28-35)SL8-specific CD8(+) T-cell populations together with the corresponding viral epitope in four rhesus macaques during acute SIVmac239Δnef infection. Ultradeep pyrosequencing showed that viral variants arose with identical kinetics in SIVmac239Δnef and pathogenic SIVmac239 infection. Furthermore, distinct Tat(28-35)SL8-specific T-cell receptor (TCR) repertoires were elicited by SIVmac239Δnef compared to those observed following a DNA/Ad5 prime-boost regimen, likely reflecting differences in antigen sequence stability.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Produtos do Gene nef/imunologia , Imunização Secundária/métodos , Vacinas contra a SAIDS/imunologia , Vírus da Imunodeficiência Símia/imunologia , Vacinação/métodos , Adenoviridae/genética , Adenovírus Humanos , Animais , Portadores de Fármacos/administração & dosagem , Vetores Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Macaca mulatta , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Vacinas contra a SAIDS/administração & dosagem , Subpopulações de Linfócitos T/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA