Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Genome ; : e20484, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38887158

RESUMO

Mid-density targeted genotyping-by-sequencing (GBS) combines trait-specific markers with thousands of genomic markers at an attractive price for linkage mapping and genomic selection. A 2.5K targeted GBS assay for potato (Solanum tuberosum L.) was developed using the DArTag technology and later expanded to 4K targets. Genomic markers were selected from the potato Infinium single nucleotide polymorphism (SNP) array to maximize genome coverage and polymorphism rates. The DArTag and SNP array platforms produced equivalent dendrograms in a test set of 298 tetraploid samples, and 83% of the common markers showed good quantitative agreement, with RMSE (root mean squared error) <0.5. DArTag is suited for genomic selection candidates in the clonal evaluation trial, coupled with imputation to a higher density platform for the training population. Using the software polyBreedR, an R package for the manipulation and analysis of polyploid marker data, the RMSE for imputation by linkage analysis was 0.15 in a small half-diallel population (N = 85), which was significantly lower than the RMSE of 0.42 with the random forest method. Regarding high-value traits, the DArTag markers for resistance to potato virus Y, golden cyst nematode, and potato wart appeared to track their targets successfully, as did multi-allelic markers for maturity and tuber shape. In summary, the potato DArTag assay is a transformative and publicly available technology for potato breeding and genetics.

2.
Theor Appl Genet ; 136(4): 65, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949348

RESUMO

KEY MESSAGE: R/StageWise enables fully efficient, two-stage analysis of multi-environment, multi-trait datasets for genomic selection, including support for dominance heterosis and polyploidy. Plant breeders interested in genomic selection often face challenges to fully utilizing multi-trait, multi-environment datasets. R package StageWise was developed to go beyond the capabilities of most specialized software for genomic prediction, without requiring the programming skills needed for more general-purpose software for mixed models. As the name suggests, one of the core features is a fully efficient, two-stage analysis for multiple environments, in which the full variance-covariance matrix of the Stage 1 genotype means is used in Stage 2. Another feature is directional dominance, including for polyploids, to account for inbreeding depression in outbred crops. StageWise enables selection with multi-trait indices, including restricted indices with one or more traits constrained to have zero response. For a potato dataset with 943 genotypes evaluated over 6 years, including the Stage 1 errors in Stage 2 reduced the Akaike Information Criterion (AIC) by 29, 67, and 104 for maturity, yield, and fry color, respectively. The proportion of variation explained by heterosis was largest for yield but still only 0.03, likely because of limited variation for the genomic inbreeding coefficient. Due to the large additive genetic correlation (0.57) between yield and maturity, naïve selection on an index combining yield and fry color led to an undesirable response for later maturity. The restricted index coefficients to maximize genetic merit without delaying maturity were identified. The software and three vignettes are available at https://github.com/jendelman/StageWise .


Assuntos
Genoma , Genômica , Fenótipo , Genótipo , Software , Modelos Genéticos , Seleção Genética
3.
Plant Genome ; 16(1): e20297, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36651146

RESUMO

Potato is a major food crop in the United States and around the world. Most potatoes grown in the United States are destined for processing. Genomic selection can speed up breeding progress for important traits, including those with complex inheritance by guiding the identification of the best parents and guiding selection to advance clones in the breeding program. However, the application of genomic selection in polyploid species has been challenging. In this study, we obtained breeding values of 384 chipping clones evaluated in Texas between 2017 and 2020. The mean reliability of the genomic-estimated breeding values obtained were 0.77, 0.41, 0.61, 0.71, and 0.24 for chip color, chip quality, specific gravity, vine maturity, and total yield, respectively. Potato clones with good chip quality, high yield, high specific gravity, and light-color chips were identified using a multi-trait selection index based on weighted standardized genomic-estimated breeding values. Genome-wide association studies identified quantitative trait loci on chromosome 5 for vine maturity and chromosomes 1, 3, and 7 for chip color. This research has laid the groundwork for implementing genomic selection in tetraploid potato breeding and understanding the genetic basis of chip processing traits in potatoes.


Assuntos
Estudo de Associação Genômica Ampla , Solanum tuberosum , Tetraploidia , Solanum tuberosum/genética , Reprodutibilidade dos Testes , Melhoramento Vegetal , Genômica
4.
Mol Plant ; 15(3): 520-536, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35026436

RESUMO

Cultivated potato is a clonally propagated autotetraploid species with a highly heterogeneous genome. Phased assemblies of six cultivars including two chromosome-scale phased genome assemblies revealed extensive allelic diversity, including altered coding and transcript sequences, preferential allele expression, and structural variation that collectively result in a highly complex transcriptome and predicted proteome, which are distributed across the homologous chromosomes. Wild species contribute to the extensive allelic diversity in tetraploid cultivars, demonstrating ancestral introgressions predating modern breeding efforts. As a clonally propagated autotetraploid that undergoes limited meiosis, dysfunctional and deleterious alleles are not purged in tetraploid potato. Nearly a quarter of the loci bore mutations are predicted to have a high negative impact on protein function, complicating breeder's efforts to reduce genetic load. The StCDF1 locus controls maturity, and analysis of six tetraploid genomes revealed that 12 allelic variants of StCDF1 are correlated with maturity in a dosage-dependent manner. Knowledge of the complexity of the tetraploid potato genome with its rampant structural variation and embedded deleterious and dysfunctional alleles will be key not only to implementing precision breeding of tetraploid cultivars but also to the construction of homozygous, diploid potato germplasm containing favorable alleles to capitalize on heterosis in F1 hybrids.


Assuntos
Solanum tuberosum , Tetraploidia , Alelos , Cromossomos , Melhoramento Vegetal , Proteoma/genética , Solanum tuberosum/genética , Transcriptoma/genética
5.
Genetics ; 219(2)2021 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-34849879

RESUMO

In diploid species, many multiparental populations have been developed to increase genetic diversity and quantitative trait loci (QTL) mapping resolution. In these populations, haplotype reconstruction has been used as a standard practice to increase the power of QTL detection in comparison with the marker-based association analysis. However, such software tools for polyploid species are few and limited to a single biparental F1 population. In this study, a statistical framework for haplotype reconstruction has been developed and implemented in the software PolyOrigin for connected tetraploid F1 populations with shared parents, regardless of the number of parents or mating design. Given a genetic or physical map of markers, PolyOrigin first phases parental genotypes, then refines the input marker map, and finally reconstructs offspring haplotypes. PolyOrigin can utilize single nucleotide polymorphism (SNP) data coming from arrays or from sequence-based genotyping; in the latter case, bi-allelic read counts can be used (and are preferred) as input data to minimize the influence of genotype calling errors at low depth. With extensive simulation we show that PolyOrigin is robust to the errors in the input genotypic data and marker map. It works well for various population designs with ≥30 offspring per parent and for sequences with read depth as low as 10x. PolyOrigin was further evaluated using an autotetraploid potato dataset with a 3 × 3 half-diallel mating design. In conclusion, PolyOrigin opens up exciting new possibilities for haplotype analysis in tetraploid breeding populations.


Assuntos
Haplótipos , Magnoliopsida/genética , Modelos Genéticos , Tetraploidia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Software
6.
Genetics ; 219(3)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34740237

RESUMO

Over the last decade, multiparental populations have become a mainstay of genetics research in diploid species. Our goal was to extend this paradigm to autotetraploids by developing software for quantitative trait locus (QTL) mapping in connected F1 populations derived from a set of shared parents. For QTL discovery, phenotypes are regressed on the dosage of parental haplotypes to estimate additive effects. Statistical properties of the model were explored by simulating half-diallel diploid and tetraploid populations with different population sizes and numbers of parents. Across scenarios, the number of progeny per parental haplotype (pph) largely determined the statistical power for QTL detection and accuracy of the estimated haplotype effects. Multiallelic QTL with heritability 0.2 were detected with 90% probability at 25 pph and genome-wide significance level 0.05, and the additive haplotype effects were estimated with over 90% accuracy. Following QTL discovery, the software enables a comparison of models with multiple QTL and nonadditive effects. To illustrate, we analyzed potato tuber shape in a half-diallel population with three tetraploid parents. A well-known QTL on chromosome 10 was detected, for which the inclusion of digenic dominance lowered the Deviance Information Criterion (DIC) by 17 points compared to the additive model. The final model also contained a minor QTL on chromosome 1, but higher-order dominance and epistatic effects were excluded based on the DIC. In terms of practical impacts, the software is already being used to select offspring based on the effect and dosage of particular haplotypes in breeding programs.


Assuntos
Mapeamento Cromossômico/métodos , Modelos Genéticos , Melhoramento Vegetal/métodos , Locos de Características Quantitativas , Solanum tuberosum/genética , Alelos , Cromossomos de Plantas , Diploide , Ligação Genética , Haplótipos , Herança Multifatorial , Software , Tetraploidia
7.
G3 (Bethesda) ; 9(4): 1189-1198, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30782769

RESUMO

Estimation of allele dosage, using genomic data, in autopolyploids is challenging and current methods often result in the misclassification of genotypes. Some progress has been made when using SNP arrays, but the major challenge is when using next generation sequencing data. Here we compare the use of read depth as continuous parameterization with ploidy parameterizations in the context of genomic selection (GS). Additionally, different sources of information to build relationship matrices were compared. A real breeding population of the autotetraploid species blueberry (Vaccinium corybosum), composed of 1,847 individuals was phenotyped for eight yield and fruit quality traits over two years. Continuous genotypic based models performed as well as the best models. This approach also reduces the computational time and avoids problems associated with misclassification of genotypic classes when assigning dosage in polyploid species. This approach could be very valuable for species with higher ploidy levels or for emerging crops where ploidy is not well understood. To our knowledge, this work constitutes the first study of genomic selection in blueberry. Accuracies are encouraging for application of GS for blueberry breeding. GS could reduce the time for cultivar release by three years, increasing the genetic gain per cycle by 86% on average when compared to phenotypic selection, and 32% when compared with pedigree-based selection. Finally, the genotypic and phenotypic data used in this study are made available for comparative analysis of dosage calling and genomic selection prediction models in the context of autopolyploids.


Assuntos
Mirtilos Azuis (Planta)/genética , Seleção Genética , Tetraploidia , Cruzamento , Dosagem de Genes , Estudos de Associação Genética
8.
Genetics ; 209(1): 77-87, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29514860

RESUMO

As one of the world's most important food crops, the potato (Solanum tuberosum L.) has spurred innovation in autotetraploid genetics, including in the use of SNP arrays to determine allele dosage at thousands of markers. By combining genotype and pedigree information with phenotype data for economically important traits, the objectives of this study were to (1) partition the genetic variance into additive vs. nonadditive components, and (2) determine the accuracy of genome-wide prediction. Between 2012 and 2017, a training population of 571 clones was evaluated for total yield, specific gravity, and chip fry color. Genomic covariance matrices for additive (G), digenic dominant (D), and additive × additive epistatic (G#G) effects were calculated using 3895 markers, and the numerator relationship matrix (A) was calculated from a 13-generation pedigree. Based on model fit and prediction accuracy, mixed model analysis with G was superior to A for yield and fry color but not specific gravity. The amount of additive genetic variance captured by markers was 20% of the total genetic variance for specific gravity, compared to 45% for yield and fry color. Within the training population, including nonadditive effects improved accuracy and/or bias for all three traits when predicting total genotypic value. When six F1 populations were used for validation, prediction accuracy ranged from 0.06 to 0.63 and was consistently lower (0.13 on average) without allele dosage information. We conclude that genome-wide prediction is feasible in potato and that it will improve selection for breeding value given the substantial amount of nonadditive genetic variance in elite germplasm.


Assuntos
Alelos , Dosagem de Genes , Variação Genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Poliploidia , Solanum tuberosum/genética , Algoritmos , Modelos Genéticos , Linhagem , Reprodutibilidade dos Testes , Seleção Genética
9.
Plant Genome ; 9(2)2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27898814

RESUMO

Genome-wide association studies (GWAS) are widely used in diploid species to study complex traits in diversity and breeding populations, but GWAS software tailored to autopolyploids is lacking. The objectives of this research were to (i) develop an R package for autopolyploids based on the + mixed model, (ii) validate the software with simulated data, and (iii) analyze a diversity panel of tetraploid potatoes. A unique feature of the R package, called GWASpoly, is its ability to model different types of polyploid gene action, including additive, simplex dominant, and duplex dominant. Using a simulated tetraploid population, we confirmed our hypothesis that statistical power is higher when the assumed gene action in the GWAS model matches the gene action at unobserved quantitative trait loci (QTL). Thirteen traits were analyzed in the Solanaceae Coordinated Agricultural Project (SolCAP) potato diversity panel and, consistent with previous studies, significant QTL for tuber shape and eye depth co-localized on chromosome 10. For the other traits, only marginally significant QTL were detected, most likely due to insufficient statistical power: for simulated traits with a heritability () of 0.3, the median genome-wide power was only 0.01. Our results indicate that both marker density and population size were limiting factors for GWAS with the SolCAP panel.


Assuntos
Estudo de Associação Genômica Ampla , Software , Solanum tuberosum/genética , Mapeamento Cromossômico , Variação Genética , Fenótipo , Tubérculos/genética , Poliploidia , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA