Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 12(19): 1886-1902, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34548906

RESUMO

Glucuronidation controls androgen levels in the prostate and the dysregulation of enzymes in this pathway is associated with castration resistant prostate cancer. UDP-glucose dehydrogenase (UGDH) produces UDP-glucuronate, the essential precursor for glucuronidation, and its expression is elevated in prostate cancer. We compared protein and metabolite levels relevant to the glucuronidation pathway in five prostate cancer patient-derived xenograft models paired with their isogenic counterparts that were selected in vivo for castration resistant (CR) recurrence. All pairs showed changes in UGDH and associated enzymes and metabolites that were consistent with those we found in an isogenic androgen dependent (AD) and CR LNCaP prostate cancer model. Ectopic overexpression of UGDH in LNCaP AD cells blunted androgen-dependent gene expression, increased proteoglycan synthesis, significantly increased cell growth compared to controls, and eliminated dose responsive growth suppression with enzalutamide treatment. In contrast, the knockdown of UGDH diminished proteoglycans, suppressed androgen dependent growth irrespective of androgens, and restored androgen sensitivity in CR cells. Importantly, the knockdown of UGDH in both LNCaP AD and CR cells dramatically sensitized these cells to enzalutamide. These results support a role for UGDH in androgen responsiveness and a target for therapeutic strategies in advanced prostate cancer.

2.
Bioorg Med Chem Lett ; 32: 127723, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33249135

RESUMO

Ribose 5-phosphate isomerase type B (RPI-B) is a key enzyme of the pentose phosphate pathway that catalyzes the isomerization of ribose 5-phosphate (R5P) and ribulose 5-phosphate (Ru5P). Trypanosoma cruzi RPI-B (TcRPI-B) appears to be a suitable drug-target mainly due to: (i) its essentiality (as previously shown in other trypanosomatids), (ii) it does not present a homologue in mammalian genomes sequenced thus far, and (iii) it participates in the production of NADPH and nucleotide/nucleic acid synthesis that are critical for parasite cell survival. In this survey, we report on the competitive inhibition of TcRPI-B by a substrate - analogue inhibitor, Compound B (Ki = 5.5 ± 0.1 µM), by the Dixon method. This compound has an iodoacetamide moiety that is susceptible to nucleophilic attack, particularly by the cysteine thiol group. Compound B was conceived to specifically target Cys-69, an important active site residue. By incubating TcRPI-B with Compound B, a trypsin digestion LC-MS/MS analysis revealed the identification of Compound B covalently bound to Cys-69. This inhibitor also exhibited notable in vitro trypanocidal activity against T. cruzi infective life-stages co-cultured in NIH-3T3 murine host cells (IC50 = 17.40 ± 1.055 µM). The study of Compound B served as a proof-of-concept so that next generation inhibitors can potentially be developed with a focus on using a prodrug group in replacement of the iodoacetamide moiety, thus representing an attractive starting point for the future treatment of Chagas' disease.


Assuntos
Aldose-Cetose Isomerases/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/química , Proteínas de Protozoários/antagonistas & inibidores , Tripanossomicidas/síntese química , Trypanosoma cruzi/enzimologia , Células 3T3 , Aldose-Cetose Isomerases/metabolismo , Animais , Sítios de Ligação , Domínio Catalítico , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Cinética , Camundongos , Simulação de Dinâmica Molecular , Proteínas de Protozoários/metabolismo , Especificidade por Substrato , Tripanossomicidas/metabolismo , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos
3.
Nanomedicine ; 21: 102070, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31351238

RESUMO

Silver nanoparticles (AgNPs) are widely used in consumer and pharmaceutical products due to their antipathogenic properties. However, safety concerns have been raised due to their bioactive properties. While reports have demonstrated AgNPs can embed within the extracellular matrix, their effects on basement membrane (BM) production, integrin engagement, and tissue-integrity are not well-defined. This study analyzed the effects of AgNPs on BM production, composition and integrin/focal adhesion interactions in representative lung, esophageal, breast and colorectal epithelia models. A multidisciplinary approach including focused proteomics, QPCR arrays, pathway analyses, and immune-based, structural and functional assays was used to identify molecular and physiological changes in cell adhesions and the BM induced by acute and chronic AgNP exposure. Dysregulated targets included CD44 and transforming growth factor-beta, two proteins frequently altered during pathogenesis. Results indicate AgNP exposure interferes with BM and cell adhesion dynamics, and provide insight into the mechanisms of AgNP-induced disruption of epithelial physiology.


Assuntos
Membrana Basal/metabolismo , Moléculas de Adesão Celular/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Nanopartículas Metálicas/química , Prata , Fator de Crescimento Transformador beta1/biossíntese , Linhagem Celular Tumoral , Humanos , Prata/química , Prata/farmacologia
4.
Methods Mol Biol ; 656: 363-83, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20680602

RESUMO

This chapter describes the utility of structurally based separations combined with imaging mass spectrometry (MS) by ion mobility-MS (IM-MS) approaches. The unique capabilities of combining rapid (mus-ms) IM separations with imaging MS are detailed for an audience ranging from new to potential practitioners in IM-MS technology. Importantly, imaging IM-MS provides the ability to rapidly separate and elucidate various types of endogenous and exogenous biomolecules (e.g., nucleotides, carbohydrates, peptides, and lipids), including isobaric species. Drift tube and traveling wave IM-MS instrumentation are described and specific protocols are presented for calculating ion-neutral collision cross sections (i.e., apparent ion surface area or structure) from experimentally obtained IM-MS data. Special emphasis is placed on the use of imaging IM-MS for the analysis of samples in life sciences research (e.g., thin tissue sections), including selective imaging for peptide/protein and lipid distributions. Future directions for rapid and multiplexed imaging IM-MS/MS are detailed.


Assuntos
Diagnóstico por Imagem/métodos , Espectrometria de Massas/métodos , Íons/química , Lipídeos/química , Peptídeos/química , Proteínas/química , Espectrometria de Massas em Tandem
5.
Chirality ; 21 Suppl 1: E253-64, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19927374

RESUMO

This report describes the strategies for gas-phase chiral and structural characterization of biomolecules using mass spectrometry (MS) and ion mobility-MS (IM-MS) techniques. Because both MS and IM-MS do not directly provide chiral selectivity, methodologies for adding a chiral selector are discussed in the context of (i) host-guest (H-G) associations, (ii) diastereomeric collision-induced dissociation (CID) methods, (iii) ion-molecule reactions, and (iv) the kinetic method. MS techniques for the analysis of proteins and protein complexes are briefly described. New advances in performing rapid 2D gas-phase separations on the basis of IM-MS are reviewed with a particular emphasis on the different forms of IM instrumentation and how they are used for chiral and/or structural biomolecular studies. This report is not intended to be a comprehensive review of the field, but rather to underscore the contemporary techniques that are commonly or increasingly being used to complement measurements performed by chiroptical methodologies.


Assuntos
Carboidratos/química , Íons/química , Lipídeos/química , Espectrometria de Massas/métodos , Nucleotídeos/química , Peptídeos/química , Cinética , Modelos Químicos , Estrutura Molecular , Estereoisomerismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA