Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomol NMR Assign ; 15(1): 1-7, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32930954

RESUMO

In humans, YTH (YT521-B homology) domain containing protein 2 (YTHDC2) plays a crucial role in the phase-shift from mitosis to meiosis. YTH domains bind to methylated adenosine nucleotides such as m6A. In a phylogenic tree, the YTH domain of YTHDC2 (YTH2) and that of the YTH containing protein YTHDC1 (YTH1) belong to the same sub-group. However, the binding affinity of m6A differs between these proteins. Here, we report 1H, 13C and 15N resonance assignment of YTH2 and its solution structure to examine the difference of the structural architecture and the dynamic properties of YTH1 and YTH2. YTH2 adopts a ß1-α1-ß2-α2-ß3-ß4-ß5-α3-ß6-α4 topology, which was also observed in YTH1. However, the ß4-ß5 loops of YTH1 and YTH2 are distinct in length and amino acid composition. Our data revealed that, unlike in YTH1, the structure of m6A-binding pocket of YTH2 formed by the ß4-ß5 loop is stabilized by electrostatic interaction. This assignment and the structural information for YTH2 will provide the insight on the further functional research of YTHDC2.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Adenosina , RNA
2.
Nucleic Acids Res ; 36(14): 4754-67, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18641416

RESUMO

The degradation of the poly(A) tail is crucial for posttranscriptional gene regulation and for quality control of mRNA. Poly(A)-specific ribonuclease (PARN) is one of the major mammalian 3' specific exo-ribonucleases involved in the degradation of the mRNA poly(A) tail, and it is also involved in the regulation of translation in early embryonic development. The interaction between PARN and the m(7)GpppG cap of mRNA plays a key role in stimulating the rate of deadenylation. Here we report the solution structures of the cap-binding domain of mouse PARN with and without the m(7)GpppG cap analog. The structure of the cap-binding domain adopts the RNA recognition motif (RRM) with a characteristic alpha-helical extension at its C-terminus, which covers the beta-sheet surface (hereafter referred to as PARN RRM). In the complex structure of PARN RRM with the cap analog, the base of the N(7)-methyl guanosine (m(7)G) of the cap analog stacks with the solvent-exposed aromatic side chain of the distinctive tryptophan residue 468, located at the C-terminal end of the second beta-strand. These unique structural features in PARN RRM reveal a novel cap-binding mode, which is distinct from the nucleotide recognition mode of the canonical RRM domains.


Assuntos
Fosfatos de Dinucleosídeos/química , Exorribonucleases/química , Análogos de Capuz de RNA/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Fosfatos de Dinucleosídeos/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Análogos de Capuz de RNA/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA