Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Brain Behav Immun ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38777288

RESUMO

BACKGROUND: The purinergic ATP-gated P2X7 receptor (P2X7R) is increasingly recognized to contribute to pathological neuroinflammation and brain hyperexcitability. P2X7R expression has been shown to be increased in the brain, including both microglia and neurons, in experimental models of epilepsy and patients. To date, the cell type-specific downstream effects of P2X7Rs during seizures remain, however, incompletely understood. METHODS: Effects of P2X7R signaling on seizures and epilepsy were analyzed in induced seizure models using male mice including the kainic acid model of status epilepticus and pentylenetetrazole model and in male and female mice in a genetic model of Dravet syndrome. RNA sequencing was used to analyze P2X7R downstream signaling during seizures. To investigate the cell type-specific role of the P2X7R during seizures and epilepsy, we generated mice lacking exon 2 of the P2rx7 gene in either microglia (P2rx7:Cx3cr1-Cre) or neurons (P2rx7:Thy-1-Cre). To investigate the protective potential of overexpressing P2X7R in GABAergic interneurons, P2X7Rs were overexpressed using adeno-associated virus transduction under the mDlx promoter. RESULTS: RNA sequencing of hippocampal tissue from wild-type and P2X7R knock-out mice identified both glial and neuronal genes, in particular genes involved in GABAergic signaling, under the control of the P2X7R following seizures. Mice with deleted P2rx7 in microglia displayed less severe acute seizures and developed a milder form of epilepsy, and microglia displayed an anti-inflammatory molecular profile. In contrast, mice lacking P2rx7 in neurons showed a more severe seizure phenotype when compared to epileptic wild-type mice. Analysis of single-cell expression data revealed that human P2RX7 expression is elevated in the hippocampus of patients with temporal lobe epilepsy in excitatory and inhibitory neurons. Functional studies determined that GABAergic interneurons display increased responses to P2X7R activation in experimental epilepsy. Finally, we show that viral transduction of P2X7R in GABAergic interneurons protects against evoked and spontaneous seizures in experimental temporal lobe epilepsy and in mice lacking Scn1a, a model of Dravet syndrome. CONCLUSIONS: Our results suggest a dual and opposing action of P2X7R in epilepsy and suggest P2X7R overexpression in GABAergic interneurons as a novel therapeutic strategy for acquired and, possibly, genetic forms of epilepsy.

2.
Biochim Biophys Acta Gene Regul Mech ; 1867(1): 195005, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242428

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) is a kinase complex that plays a crucial role in coordinating cell growth in response to various signals, including amino acids, growth factors, oxygen, and ATP. Activation of mTORC1 promotes cell growth and anabolism, while its suppression leads to catabolism and inhibition of cell growth, enabling cells to withstand nutrient scarcity and stress. Dysregulation of mTORC1 activity is associated with numerous diseases, such as cancer, metabolic disorders, and neurodegenerative conditions. This review focuses on how post-translational modifications, particularly phosphorylation and ubiquitination, modulate mTORC1 signaling pathway and their consequential implications for pathogenesis. Understanding the impact of phosphorylation and ubiquitination on the mTORC1 signaling pathway provides valuable insights into the regulation of cellular growth and potential therapeutic targets for related diseases.


Assuntos
Complexos Multiproteicos , Serina-Treonina Quinases TOR , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Serina-Treonina Quinases TOR/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Transdução de Sinais , Expressão Gênica
4.
Purinergic Signal ; 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37453017

RESUMO

Activation of the ATP-gated P2X7 receptor (P2X7R), implicated in numerous diseases of the brain, can trigger diverse responses such as the release of pro-inflammatory cytokines, modulation of neurotransmission, cell proliferation or cell death. However, despite the known species-specific differences in its pharmacological properties, to date, most functional studies on P2X7R responses have been analyzed in cells from rodents or immortalised cell lines. To assess the endogenous and functional expression of P2X7Rs in human astrocytes, we differentiated human-induced pluripotent stem cells (hiPSCs) into GFAP and S100 ß-expressing astrocytes. Immunostaining revealed prominent punctate P2X7R staining. P2X7R protein expression was also confirmed by Western blot. Importantly, stimulation with the potent non-selective P2X7R agonist 2',3'-O-(benzoyl-4-benzoyl)-adenosine 5'- triphosphate (BzATP) or endogenous agonist ATP induced robust calcium rises in hiPSC-derived astrocytes which were blocked by the selective P2X7R antagonists AFC-5128 or JNJ-47965567. Our findings provide evidence for the functional expression of P2X7Rs in hiPSC-derived astrocytes and support their in vitro utility in investigating the role of the P2X7R and drug screening in disorders of the central nervous system (CNS).

5.
Proc Natl Acad Sci U S A ; 120(30): e2216658120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37463203

RESUMO

There remains an urgent need for new therapies for treatment-resistant epilepsy. Sodium channel blockers are effective for seizure control in common forms of epilepsy, but loss of sodium channel function underlies some genetic forms of epilepsy. Approaches that provide bidirectional control of sodium channel expression are needed. MicroRNAs (miRNA) are small noncoding RNAs which negatively regulate gene expression. Here we show that genome-wide miRNA screening of hippocampal tissue from a rat epilepsy model, mice treated with the antiseizure medicine cannabidiol, and plasma from patients with treatment-resistant epilepsy, converge on a single target-miR-335-5p. Pathway analysis on predicted and validated miR-335-5p targets identified multiple voltage-gated sodium channels (VGSCs). Intracerebroventricular injection of antisense oligonucleotides against miR-335-5p resulted in upregulation of Scn1a, Scn2a, and Scn3a in the mouse brain and an increased action potential rising phase and greater excitability of hippocampal pyramidal neurons in brain slice recordings, consistent with VGSCs as functional targets of miR-335-5p. Blocking miR-335-5p also increased voltage-gated sodium currents and SCN1A, SCN2A, and SCN3A expression in human induced pluripotent stem cell-derived neurons. Inhibition of miR-335-5p increased susceptibility to tonic-clonic seizures in the pentylenetetrazol seizure model, whereas adeno-associated virus 9-mediated overexpression of miR-335-5p reduced seizure severity and improved survival. These studies suggest modulation of miR-335-5p may be a means to regulate VGSCs and affect neuronal excitability and seizures. Changes to miR-335-5p may reflect compensatory mechanisms to control excitability and could provide biomarker or therapeutic strategies for different types of treatment-resistant epilepsy.


Assuntos
Epilepsia , Células-Tronco Pluripotentes Induzidas , MicroRNAs , Canais de Sódio Disparados por Voltagem , Humanos , Camundongos , Ratos , Animais , Células-Tronco Pluripotentes Induzidas/metabolismo , Convulsões/induzido quimicamente , Convulsões/genética , Convulsões/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Canais de Sódio Disparados por Voltagem/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.3/genética
6.
Alzheimers Res Ther ; 15(1): 105, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37287063

RESUMO

BACKGROUND: Over recent years, increasing evidence suggests a causal relationship between neurofibrillary tangles (NFTs) formation, the main histopathological hallmark of tauopathies, including Alzheimer's disease (AD), and the ubiquitin-proteasome system (UPS) dysfunction detected in these patients. Nevertheless, the mechanisms underlying UPS failure and the factors involved remain poorly understood. Given that AD and tauopathies are associated with chronic neuroinflammation, here, we explore if ATP, one of the danger-associated molecules patterns (DAMPs) associated with neuroinflammation, impacts on AD-associated UPS dysfunction. METHODS: To evaluate if ATP may modulate the UPS via its selective P2X7 receptor, we combined in vitro and in vivo approaches using both pharmacological and genetic tools. We analyze postmortem samples from human AD patients and P301S mice, a mouse model that mimics pathology observed in AD patients, and those from the new transgenic mouse lines generated, such as P301S mice expressing the UPS reporter UbG76V-YFP or P301S deficient of P2X7R. RESULTS: We describe for the first time that extracellular ATP-induced activation of the purinergic P2X7 receptor (P2X7R) downregulates the transcription of ß5 and ß1 proteasomal catalytic subunits via the PI3K/Akt/GSK3/Nfr2 pathway, leading to their deficient assembly into the 20S core proteasomal complex, resulting in a reduced proteasomal chymotrypsin-like and postglutamyl-like activities. Using UPS-reported mice (UbGFP mice), we identified neurons and microglial cells as the most sensitive cell linages to a P2X7R-mediated UPS regulation. In vivo pharmacological or genetic P2X7R blockade reverted the proteasomal impairment developed by P301S mice, which mimics that were detected in AD patients. Finally, the generation of P301S;UbGFP mice allowed us to identify those hippocampal cells more sensitive to UPS impairment and demonstrate that the pharmacological or genetic blockade of P2X7R promotes their survival. CONCLUSIONS: Our work demonstrates the sustained and aberrant activation of P2X7R caused by Tau-induced neuroinflammation contributes to the UPS dysfunction and subsequent neuronal death associated with AD, especially in the hippocampus.


Assuntos
Doença de Alzheimer , Tauopatias , Camundongos , Humanos , Animais , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Complexo de Endopeptidases do Proteassoma , Receptores Purinérgicos P2X7/genética , Ubiquitina , Doenças Neuroinflamatórias , Quinase 3 da Glicogênio Sintase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Transgênicos , Trifosfato de Adenosina/metabolismo
7.
Int J Mol Sci ; 24(6)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36982485

RESUMO

Epilepsy, characterized by recurrent spontaneous seizures, is a heterogeneous group of brain diseases affecting over 70 million people worldwide. Major challenges in the management of epilepsy include its diagnosis and treatment. To date, video electroencephalogram (EEG) monitoring is the gold-standard diagnostic method, with no molecular biomarker in routine clinical use. Moreover, treatment based on anti-seizure medications (ASMs) remains ineffective in 30% of patients, and, even if seizure-suppressive, lacks disease-modifying potential. Current epilepsy research is, therefore, mainly focussed on the identification of new drugs with a different mechanism of action effective in patients not responding to current ASMs. The vast heterogeneity of epilepsy syndromes, including differences in underlying pathology, comorbidities and disease progression, represents, however, a particular challenge in drug discovery. Optimal treatment most likely requires the identification of new drug targets combined with diagnostic methods to identify patients in need of a specific treatment. Purinergic signalling via extracellularly released ATP is increasingly recognized to contribute to brain hyperexcitability and, consequently, drugs targeting this signalling system have been proposed as a new therapeutic strategy for epilepsy. Among the purinergic ATP receptors, the P2X7 receptor (P2X7R) has attracted particular attention as a novel target for epilepsy treatment, with P2X7Rs contributing to unresponsiveness to ASMs and drugs targeting the P2X7R modulating acute seizure severity and suppressing seizures during epilepsy. In addition, P2X7R expression has been reported to be altered in the brain and circulation in experimental models of epilepsy and patients, making it both a potential therapeutic and diagnostic target. The present review provides an update on the newest findings regarding P2X7R-based treatments for epilepsy and discusses the potential of P2X7R as a mechanistic biomarker.


Assuntos
Epilepsia Generalizada , Epilepsia , Síndromes Epilépticas , Humanos , Receptores Purinérgicos P2X7/metabolismo , Epilepsia/diagnóstico , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Encéfalo/metabolismo , Dano Encefálico Crônico , Trifosfato de Adenosina/metabolismo
8.
Epilepsia ; 64(2): 511-523, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36507708

RESUMO

OBJECTIVE: The P2X7 receptor (P2X7R) is an important contributor to neuroinflammation, responding to extracellularly released adenosine triphosphate. Expression of the P2X7R is increased in the brain in experimental and human epilepsy, and genetic or pharmacologic targeting of the receptor can reduce seizure frequency and severity in preclinical models. Experimentally induced seizures also increase levels of the P2X7R in blood. Here, we tested 18 F-JNJ-64413739, a positron emission tomography (PET) P2X7R antagonist, as a potential noninvasive biomarker of seizure-damage and epileptogenesis. METHODS: Status epilepticus was induced via an intra-amygdala microinjection of kainic acid. Static PET studies (30 min duration, initiated 30 min after tracer administration) were conducted 48 h after status epilepticus via an intravenous injection of 18 F-JNJ-64413739. PET images were coregistered with a brain magnetic resonance imaging atlas, tracer uptake was determined in the different brain regions and peripheral organs, and values were correlated to seizure severity during status epilepticus. 18 F-JNJ-64413739 was also applied to ex vivo human brain slices obtained following surgical resection for intractable temporal lobe epilepsy. RESULTS: P2X7R radiotracer uptake correlated strongly with seizure severity during status epilepticus in brain structures including the cerebellum and ipsi- and contralateral cortex, hippocampus, striatum, and thalamus. In addition, a correlation between radiotracer uptake and seizure severity was also evident in peripheral organs such as the heart and the liver. Finally, P2X7R radiotracer uptake was found elevated in brain sections from patients with temporal lobe epilepsy when compared to control. SIGNIFICANCE: Taken together, our data suggest that P2X7R-based PET imaging may help to identify seizure-induced neuropathology and temporal lobe epilepsy patients with increased P2X7R levels possibly benefitting from P2X7R-based treatments.


Assuntos
Epilepsia do Lobo Temporal , Estado Epiléptico , Camundongos , Humanos , Masculino , Animais , Epilepsia do Lobo Temporal/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/uso terapêutico , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/diagnóstico por imagem , Estado Epiléptico/metabolismo , Convulsões/tratamento farmacológico
9.
Neuropharmacology ; 222: 109303, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36309046

RESUMO

Epilepsy is one of the most common and disabling chronic neurological diseases affecting people of all ages. Major challenges of epilepsy management include the persistently high percentage of drug-refractoriness among patients, the absence of disease-modifying treatments, and its diagnosis and prognosis. To date, long-term video-electroencephalogram (EEG) recordings remain the gold standard for an epilepsy diagnosis. However, this is very costly, has low throughput, and in some instances has very limited availability. Therefore, much effort is put into the search for non-invasive diagnostic tests. Purinergic signalling, via extracellularly released adenosine triphosphate (ATP), is gaining increasing traction as a therapeutic strategy for epilepsy treatment which is supported by evidence from both experimental models and patients. This includes in particular the ionotropic P2X7 receptor. Besides that, other components from the ATPergic signalling cascade such as the metabotropic P2Y receptors (e.g., P2Y1 receptor) and ATP-release channels (e.g., pannexin-1), have also been shown to contribute to seizures and epilepsy. In addition to the therapeutic potential of purinergic signalling, emerging evidence has also shown its potential as a diagnostic tool. Following seizures and epilepsy, the concentration of purines in the blood and the expression of different compounds of the purinergic signalling cascade are significantly altered. Herein, this review will provide a detailed discussion of recent findings on the diagnostic potential of purinergic signalling for epilepsy management and the prospect of translating it for clinical application. This article is part of the Special Issue on 'Purinergic Signaling: 50 years'.


Assuntos
Epilepsia , Humanos , Epilepsia/diagnóstico , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Convulsões/metabolismo , Trifosfato de Adenosina/metabolismo , Transdução de Sinais , Eletroencefalografia , Receptores Purinérgicos/metabolismo , Receptores Purinérgicos P2X7/metabolismo
10.
Cells ; 11(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36497008

RESUMO

While acute inflammation is widely accepted as an important response mechanism of cells against tissue injury, sustained inflammatory processes are increasingly recognized as one of the main contributors to numerous diseases, including central-nervous system (CNS)-related and non-CNS-related diseases such as depression, neurodegenerative diseases, type 2 diabetes, hypertension, cardiovascular diseases, chronic kidney disease, osteoporosis, and cancer [...].


Assuntos
Diabetes Mellitus Tipo 2 , Doenças Neurodegenerativas , Humanos , Transdução de Sinais/fisiologia , Sistema Nervoso Central
11.
Br J Pharmacol ; 179(12): 2986-3006, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34962289

RESUMO

BACKGROUND AND PURPOSE: Refractory status epilepticus is a clinical emergency associated with high mortality and morbidity. Increasing evidence suggests neuroinflammation contributes to the development of drug-refractoriness during status epilepticus. Here, we have determined the contribution of the ATP-gated P2X7 receptor, previously linked to inflammation and increased hyperexcitability, to drug-refractory status epilepticus and its therapeutic potential. EXPERIMENTAL APPROACH: Status epilepticus was induced via a unilateral microinjection of kainic acid into the amygdala in adult mice. Severity of status epilepticus was compared in animals with overexpressing or knock-out of the P2X7 receptor, after inflammatory priming by pre-injection of bacterial lipopolysaccharide (LPS) and in mice treated with P2X7 receptor-targeting and anti-inflammatory drugs. KEY RESULTS: Mice overexpressing P2X7 receptors were unresponsive to several anticonvulsants (lorazepam, midazolam, phenytoin and carbamazepine) during status epilepticus. P2X7 receptor expression increased in microglia during status epilepticus, at times when responses to anticonvulsants were reduced. Overexpression of P2X7 receptors induced a pro-inflammatory phenotype in microglia during status epilepticus and the anti-inflammatory drug minocycline restored normal responses to anticonvulsants in mice overexpressing P2X7 receptors. Pretreatment of wild-type mice with LPS increased P2X7 receptor levels in the brain and reduced responsiveness to anticonvulsants during status epilepticus, which was overcome by either genetic deletion of P2X7 receptors or treatment with the P2X7 receptor antagonists, AFC-5128 or ITH15004. CONCLUSION AND IMPLICATIONS: Our results demonstrate that P2X7 receptor-induced pro-inflammatory effects contribute to resistance to pharmacotherapy during status epilepticus. Therapies targeting P2X7 receptors could be novel adjunctive treatments for drug-refractory status epilepticus.


Assuntos
Receptores Purinérgicos P2X7 , Estado Epiléptico , Trifosfato de Adenosina/metabolismo , Animais , Anticonvulsivantes/efeitos adversos , Convulsivantes/efeitos adversos , Lipopolissacarídeos/farmacologia , Camundongos , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/metabolismo
12.
Front Mol Neurosci ; 14: 732199, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566578

RESUMO

Background: Evidence suggests that earlier diagnosis and initiation of treatment immediately after birth is critical for improved neurodevelopmental outcomes following neonatal encephalopathy (NE). Current diagnostic tests are, however, mainly restricted to clinical diagnosis with no molecular tests available. Purines including adenosine are released during brain injury such as hypoxia and are also present in biofluids. Whether blood purine changes can be used to diagnose NE has not been investigated to date. Methods: Blood purines were measured in a mouse model of neonatal hypoxia and infants with NE using a novel point-of-care diagnostic technology (SMARTChip) based on the summated electrochemical detection of adenosine and adenosine metabolites in the blood. Results: Blood purine concentrations were ∼2-3-fold elevated following hypoxia in mice [2.77 ± 0.48 µM (Control) vs. 7.57 ± 1.41 µM (post-hypoxia), p = 0.029]. Data in infants with NE had a 2-3-fold elevation when compared to healthy controls [1.63 ± 0.47 µM (Control, N = 5) vs. 4.87 ± 0.92 µM (NE, N = 21), p = 0.0155]. ROC curve analysis demonstrates a high sensitivity (81%) and specificity (80%) for our approach to identify infants with NE. Moreover, blood purine concentrations were higher in infants with NE and seizures [8.13 ± 3.23 µM (with seizures, N = 5) vs. 3.86 ± 0.56 µM (without seizures, N = 16), p = 0.044]. Conclusion: Our data provides the proof-of-concept that measurement of blood purine concentrations via SMARTChip technology may offer a low-volume bedside test to support a rapid diagnosis of NE.

13.
Prog Neurobiol ; 204: 102105, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34144123

RESUMO

Despite continuous advances in understanding the underlying pathogenesis of hyperexcitable networks and lowered seizure thresholds, the treatment of epilepsy remains a clinical challenge. Over one third of patients remain resistant to current pharmacological interventions. Moreover, even when effective in suppressing seizures, current medications are merely symptomatic without significantly altering the course of the disease. Much effort is therefore invested in identifying new treatments with novel mechanisms of action, effective in drug-refractory epilepsy patients, and with the potential to modify disease progression. Compelling evidence has demonstrated that the purines, ATP and adenosine, are key mediators of the epileptogenic process. Extracellular ATP concentrations increase dramatically under pathological conditions, where it functions as a ligand at a host of purinergic receptors. ATP, however, also forms a substrate pool for the production of adenosine, via the action of an array of extracellular ATP degrading enzymes. ATP and adenosine have assumed largely opposite roles in coupling neuronal excitability to energy homeostasis in the brain. This review integrates and critically discusses novel findings regarding how ATP and adenosine control seizures and the development of epilepsy. This includes purine receptor P1 and P2-dependent mechanisms, release and reuptake mechanisms, extracellular and intracellular purine metabolism, and emerging receptor-independent effects of purines. Finally, possible purine-based therapeutic strategies for seizure suppression and disease modification are discussed.


Assuntos
Epilepsia , Convulsões , Adenosina , Trifosfato de Adenosina , Epilepsia/tratamento farmacológico , Humanos , Purinas , Convulsões/tratamento farmacológico
14.
Epilepsia ; 62(3): 817-828, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33599287

RESUMO

OBJECTIVE: There is a major unmet need for a molecular biomarker of seizures or epilepsy that lends itself to fast, affordable detection in an easy-to-use point-of-care device. Purines such as adenosine triphosphate and adenosine are potent neuromodulators released during excessive neuronal activity that are also present in biofluids. Their biomarker potential for seizures and epilepsy in peripheral blood has, however, not yet been investigated. The aim of the present study was to determine whether blood purine nucleoside measurements can serve as a biomarker for the recent occurrence of seizures and to support the diagnosis of epilepsy. METHODS: Blood purine concentrations were measured via a point-of-care diagnostic technology based on the summated electrochemical detection of adenosine and adenosine breakdown products (inosine, hypoxanthine, and xanthine; SMARTChip). Measurements of blood purine concentrations were carried out using samples from mice subjected to intra-amygdala kainic acid-induced status epilepticus and in video-electroencephalogram (EEG)-monitored adult patients with epilepsy. RESULTS: In mice, blood purine concentrations were rapidly increased approximately two- to threefold after status epilepticus (2.32 ± .40 µmol·L-1 [control] vs. 8.93 ± 1.03 µmol·L-1 [after status epilepticus]), and levels correlated with seizure burden and postseizure neurodegeneration in the hippocampus. Blood purine concentrations were also elevated in patients with video-EEG-diagnosed epilepsy (2.39 ± .34 µmol·L-1 [control, n = 13] vs. 4.35 ± .38 µmol·L-1 [epilepsy, n = 26]). SIGNIFICANCE: Our data provide proof of concept that the measurement of blood purine concentrations may offer a rapid, low-volume bedside test to support the diagnosis of seizures and epilepsy.


Assuntos
Epilepsia/sangue , Purinas/sangue , Convulsões/sangue , Adenosina/sangue , Adulto , Animais , Biomarcadores/sangue , Estudos de Casos e Controles , Epilepsia/diagnóstico , Humanos , Hipoxantina/sangue , Inosina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Testes Imediatos , Convulsões/diagnóstico , Índice de Gravidade de Doença , Estado Epiléptico/sangue , Estado Epiléptico/diagnóstico , Xantina/sangue , Adulto Jovem
15.
Int J Mol Sci ; 23(1)2021 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-35008658

RESUMO

Macrophages are mononuclear phagocytes which derive either from blood-borne monocytes or reside as resident macrophages in peripheral (Kupffer cells of the liver, marginal zone macrophages of the spleen, alveolar macrophages of the lung) and central tissue (microglia). They occur as M1 (pro-inflammatory; classic) or M2 (anti-inflammatory; alternatively activated) phenotypes. Macrophages possess P2X7 receptors (Rs) which respond to high concentrations of extracellular ATP under pathological conditions by allowing the non-selective fluxes of cations (Na+, Ca2+, K+). Activation of P2X7Rs by still higher concentrations of ATP, especially after repetitive agonist application, leads to the opening of membrane pores permeable to ~900 Da molecules. For this effect an interaction of the P2X7R with a range of other membrane channels (e.g., P2X4R, transient receptor potential A1 [TRPA1], pannexin-1 hemichannel, ANO6 chloride channel) is required. Macrophage-localized P2X7Rs have to be co-activated with the lipopolysaccharide-sensitive toll-like receptor 4 (TLR4) in order to induce the formation of the inflammasome 3 (NLRP3), which then activates the pro-interleukin-1ß (pro-IL-1ß)-degrading caspase-1 to lead to IL-1ß release. Moreover, inflammatory diseases (e.g., rheumatoid arthritis, Crohn's disease, sepsis, etc.) are generated downstream of the P2X7R-induced upregulation of intracellular second messengers (e.g., phospholipase A2, p38 mitogen-activated kinase, and rho G proteins). In conclusion, P2X7Rs at macrophages appear to be important targets to preserve immune homeostasis with possible therapeutic consequences.


Assuntos
Inflamassomos/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animais , Humanos , Macrófagos/imunologia , Doenças Neuroinflamatórias , Receptores Purinérgicos P2X7/imunologia
16.
ERJ Open Res ; 6(4)2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33313304

RESUMO

Aspergillus fumigatus is a saprobic fungus that causes a range of pulmonary diseases, some of which are characterised by fungal persistence such as is observed in cystic fibrosis (CF) patients. Creation of genetic variation is critical for A. fumigatus to adapt to the lung environment, but biofilm formation, especially in CF patients, may preclude mutational supply in A. fumigatus due to its confinement to the hyphal morphotype. We tested our hypothesis that genetic variation is created through parasexual recombination in chronic biofilms by phenotypic and genetic analysis of A. fumigatus isolates cultured from different origins. As diploids are the hallmark of parasex, we screened 799 A. fumigatus isolates obtained from patients with CF, chronic pulmonary lung disease and acute invasive aspergillosis, and from the environment for spore size. Benomyl sensitivity, nuclear content measurements through fluorescence-activated cell sorting and scanning electron microscopy were used to confirm the diploid state of large size spores. Whole genome sequencing was used to characterise diploid-associated genetic variation. We identified 11 diploids in isolates recovered from six of 11 (55%) CF patients and from one of 24 (4%) chronic aspergillosis patients, but not in 368 isolates from patients with acute Aspergillus infection and the environment. Diploid formation was associated with accumulation of mutations and variable haploid offspring including a voriconazole-resistant isolate. Parasexual recombination allows A. fumigatus to adapt and persist in CF patients, and plays a role in azole resistance development. Our findings are highly significant for understanding the genetics and biology of A. fumigatus in the human lung.

17.
Int J Mol Sci ; 21(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105750

RESUMO

Neonatal seizures are one of the most common comorbidities of neonatal encephalopathy, with seizures aggravating acute injury and clinical outcomes. Current treatment can control early life seizures; however, a high level of pharmacoresistance remains among infants, with increasing evidence suggesting current anti-seizure medication potentiating brain damage. This emphasises the need to develop safer therapeutic strategies with a different mechanism of action. The purinergic system, characterised by the use of adenosine triphosphate and its metabolites as signalling molecules, consists of the membrane-bound P1 and P2 purinoreceptors and proteins to modulate extracellular purine nucleotides and nucleoside levels. Targeting this system is proving successful at treating many disorders and diseases of the central nervous system, including epilepsy. Mounting evidence demonstrates that drugs targeting the purinergic system provide both convulsive and anticonvulsive effects. With components of the purinergic signalling system being widely expressed during brain development, emerging evidence suggests that purinergic signalling contributes to neonatal seizures. In this review, we first provide an overview on neonatal seizure pathology and purinergic signalling during brain development. We then describe in detail recent evidence demonstrating a role for purinergic signalling during neonatal seizures and discuss possible purine-based avenues for seizure suppression in neonates.


Assuntos
Receptores Purinérgicos P1/metabolismo , Receptores Purinérgicos P2/metabolismo , Convulsões/etiologia , Convulsões/terapia , Animais , Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/metabolismo , Modelos Animais de Doenças , Humanos , Hipotermia Induzida/métodos , Lactente , Recém-Nascido , Terapia de Alvo Molecular , Antagonistas do Receptor Purinérgico P2/farmacologia , Purinas/metabolismo , Convulsões/tratamento farmacológico
18.
Neurosci Bull ; 36(11): 1242-1258, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32895896

RESUMO

Mounting evidence suggests that the ATP-gated P2X7 receptor contributes to increased hyperexcitability in the brain. While increased expression of P2X7 in the hippocampus and cortex following status epilepticus and during epilepsy has been repeatedly demonstrated, the cell type-specific expression of P2X7 and its expression in extra-hippocampal brain structures remains incompletely explored. In this study, P2X7 expression was visualized by using a transgenic mouse model overexpressing P2X7 fused to the fluorescent protein EGFP. The results showed increased P2X7-EGFP expression after status epilepticus induced by intra-amygdala kainic acid and during epilepsy in different brain regions including the hippocampus, cortex, striatum, thalamus and cerebellum, and this was most evident in microglia and oligodendrocytes. Co-localization of P2X7-EGFP with cell type-specific markers was not detected in neurons or astrocytes. These data suggest that P2X7 activation is a common pathological hallmark across different brain structures, possibly contributing to brain inflammation and neurodegeneration following acute seizures and during epilepsy.


Assuntos
Epilepsia , Receptores Purinérgicos P2X7/metabolismo , Estado Epiléptico , Trifosfato de Adenosina , Animais , Encéfalo/metabolismo , Epilepsia/metabolismo , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Oligodendroglia/metabolismo , Estado Epiléptico/metabolismo
19.
J Fungi (Basel) ; 6(2)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526938

RESUMO

Cystic fibrosis (CF) can be complicated by fungal infection of the respiratory tract. Fungal detection rates in CF sputa are highly dependent on the culture protocol and incubation conditions and thus may lead to an underestimation of the true prevalence of fungal colonization. We conducted a prospective study to evaluate the additional value of mucolytic pre-treatment, increased inoculum (100 µL), additional fungal culture media (Sabouraud agar; SAB, Medium B+, Scedosporium selective agar; SceSel+ and Dichloran-Glycerol agar; DG18) and longer incubation time (3 weeks) compared with our current protocol. Using the new protocol, we prospectively analyzed 216 expectorated sputum samples from adult and pediatric CF patients (n = 77) and compared the culture yield to a three year retrospective cohort that used direct 10 µL loop inoculation on SAB with 5 days incubation (867 sputum samples/103 patients). Detection rates for molds increased from 42% to 76% (p < 0.0001). Twenty-six percent of cultures were polymicrobial in the prospective cohort as opposed to 4.7% in the retrospective cohort (p < 0.0001). Colonization rate with A. fumigatus increased from 36% to 57%. SAB and DG18 showed the highest detection rates for all molds (SAB 58.6%; DG18 56.9%) and DG18 had the best performance for molds other than A. fumigatus. The larger sample volume and longer incubation also contributed to the increased recovery of molds. The introduction of a modified fungal culture protocol leads to a major increase in detection rate and the diversity of molds, which influences fungal epidemiology and may have implications for treatment decisions.

20.
Methods Mol Biol ; 2041: 197-207, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31646490

RESUMO

Adenosine 5-triphosphate (ATP) functions in the central nervous system as an extracellular signaling molecule. While much progress has been made in understanding the circumstances under which it is released, from in vitro preparations, in vivo has proven more challenging. Microdialysis followed by high-performance liquid chromatography has been employed to demonstrate a spike in extracellular concentrations under some pathological conditions including seizures, but this method lacks the sensitivity to detect extracellular ATP at concentrations present under normal physiological conditions. An alternative approach, the use of amperometric, enzyme-based microelectrode biosensors for measuring extracellular ATP in vivo have been employed in the rabbit. Here, we describe a protocol for measuring ATP concentrations using these biosensors in the mouse, simultaneously with electroencephalogram recordings. This approach is ideal for investigating the relationship between ATP release and seizures.


Assuntos
Trifosfato de Adenosina/análise , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Ensaios Enzimáticos/métodos , Microeletrodos , Convulsões/metabolismo , Animais , Camundongos , Convulsões/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA