Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(5): 104571, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36871754

RESUMO

Metastasis-suppressor 1 (MTSS1) is a membrane-interacting scaffolding protein that regulates the integrity of epithelial cell-cell junctions and functions as a tumor suppressor in a wide range of carcinomas. MTSS1 binds phosphoinositide-rich membranes through its I-BAR domain and is capable of sensing and generating negative membrane curvature in vitro. However, the mechanisms by which MTSS1 localizes to intercellular junctions in epithelial cells and contributes to their integrity and maintenance have remained elusive. By carrying out EM and live-cell imaging on cultured Madin-Darby canine kidney cell monolayers, we provide evidence that adherens junctions of epithelial cells harbor lamellipodia-like, dynamic actin-driven membrane folds, which exhibit high negative membrane curvature at their distal edges. BioID proteomics and imaging experiments demonstrated that MTSS1 associates with an Arp2/3 complex activator, the WAVE-2 complex, in dynamic actin-rich protrusions at cell-cell junctions. Inhibition of Arp2/3 or WAVE-2 suppressed actin filament assembly at adherens junctions, decreased the dynamics of junctional membrane protrusions, and led to defects in epithelial integrity. Together, these results support a model in which membrane-associated MTSS1, together with the WAVE-2 and Arp2/3 complexes, promotes the formation of dynamic lamellipodia-like actin protrusions that contribute to the integrity of cell-cell junctions in epithelial monolayers.


Assuntos
Actinas , Proteínas dos Microfilamentos , Pseudópodes , Animais , Cães , Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Junções Aderentes/metabolismo , Células Epiteliais/metabolismo , Junções Intercelulares/metabolismo , Células Madin Darby de Rim Canino , Proteínas de Membrana/metabolismo , Pseudópodes/metabolismo , Proteínas dos Microfilamentos/metabolismo
2.
Nat Commun ; 13(1): 6032, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229430

RESUMO

Contractile actomyosin bundles are key force-producing and mechanosensing elements in muscle and non-muscle tissues. Whereas the organization of muscle myofibrils and mechanism regulating their contractility are relatively well-established, the principles by which myosin-II activity and force-balance are regulated in non-muscle cells have remained elusive. We show that Caldesmon, an important component of smooth muscle and non-muscle cell actomyosin bundles, is an elongated protein that functions as a dynamic cross-linker between myosin-II and tropomyosin-actin filaments. Depletion of Caldesmon results in aberrant lateral movement of myosin-II filaments along actin bundles, leading to irregular myosin distribution within stress fibers. This manifests as defects in stress fiber network organization and contractility, and accompanied problems in cell morphogenesis, migration, invasion, and mechanosensing. These results identify Caldesmon as critical factor that ensures regular myosin-II spacing within non-muscle cell actomyosin bundles, and reveal how stress fiber networks are controlled through dynamic cross-linking of tropomyosin-actin and myosin filaments.


Assuntos
Fibras de Estresse , Tropomiosina , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Músculo Liso/metabolismo , Miosina Tipo II/metabolismo , Miosinas/metabolismo , Fibras de Estresse/metabolismo , Tropomiosina/metabolismo
3.
J Clin Med ; 10(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068785

RESUMO

There has been an increasing worldwide incidence of invasive group A streptococcal (GAS) disease in pregnancy and in the puerperal period over the past 30 years. Postpartum Group A streptococci infection, and in particular streptococcal toxic shock syndrome (TSS) and necrotizing fasciitis, can be life threatening and difficult to treat. Despite antibiotics and supportive therapy, and in some cases advanced extensive surgery, mortality associated with invasive group A streptococcal postpartum endometritis, necrotizing fasciitis, and toxic shock syndrome remains high, up to 40% of postpartum septic deaths. It now accounts for more than 75,000 deaths worldwide every year. Postpartum women have a 20-fold increased incidence of GAS disease compared to non-pregnant women. Despite the high incidence, many invasive GAS infections are not diagnosed in a timely manner, resulting in potentially preventable maternal and neonatal deaths. In this paper the specific characteristics of GAS infection in the field of Ob/Gyn are brought to our attention, resulting in guidelines to improve our awareness, early recognition and timely treatment of the disease. New European prevalence data of vaginal GAS colonization are presented, alongside two original case histories. Additionally, aerobic vaginitis is proposed as a supplementary risk factor for invasive GAS diseases.

4.
Sci Rep ; 8(1): 17670, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518778

RESUMO

Contractile actomyosin bundles, stress fibers, contribute to morphogenesis, migration, and mechanosensing of non-muscle cells. In addition to actin and non-muscle myosin II (NMII), stress fibers contain a large array of proteins that control their assembly, turnover, and contractility. Calponin-3 (Cnn3) is an actin-binding protein that associates with stress fibers. However, whether Cnn3 promotes stress fiber assembly, or serves as either a positive or negative regulator of their contractility has remained obscure. Here, we applied U2OS osteosarcoma cells as a model system to study the function of Cnn3. We show that Cnn3 localizes to both NMII-containing contractile ventral stress fibers and transverse arcs, as well as to non-contractile dorsal stress fibers that do not contain NMII. Fluorescence-recovery-after-photobleaching experiments revealed that Cnn3 is a dynamic component of stress fibers. Importantly, CRISPR/Cas9 knockout and RNAi knockdown studies demonstrated that Cnn3 is not essential for stress fiber assembly. However, Cnn3 depletion resulted in increased and uncoordinated contractility of stress fibers that often led to breakage of individual actomyosin bundles within the stress fiber network. Collectively these results provide evidence that Cnn3 is dispensable for the assembly of actomyosin bundles, but that it is required for controlling proper contractility of the stress fiber network.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fibras de Estresse/metabolismo , Proteínas de Ligação ao Cálcio/análise , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular Tumoral , Recuperação de Fluorescência Após Fotodegradação , Inativação Gênica , Humanos , Imageamento Tridimensional , Proteínas dos Microfilamentos/análise , Proteínas dos Microfilamentos/genética , Imagem Óptica , Osteossarcoma/genética , Osteossarcoma/metabolismo , Fibras de Estresse/genética , Fibras de Estresse/ultraestrutura , Calponinas
5.
Development ; 144(4): 687-697, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28087632

RESUMO

Animal organs are typically formed during embryogenesis by following one specific developmental programme. Here, we report that neuromast organs are generated by two distinct and sequential programmes that result in parallel sensory lines in medaka embryos. A ventral posterior lateral line (pLL) is composed of neuromasts deposited by collectively migrating cells whereas a midline pLL is formed by individually migrating cells. Despite the variable number of neuromasts among embryos, the sequential programmes that we describe here fix an invariable ratio between ventral and midline neuromasts. Mechanistically, we show that the formation of both types of neuromasts depends on the chemokine receptor genes cxcr4b and cxcr7b, illustrating how common molecules can mediate different morphogenetic processes. Altogether, we reveal a self-organising feature of the lateral line system that ensures a proper distribution of sensory organs along the body axis.


Assuntos
Mutação , Organogênese , Oryzias/embriologia , Oryzias/fisiologia , Animais , Padronização Corporal , Movimento Celular , Quimiocinas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Hibridização In Situ , Sistema da Linha Lateral , Mecanorreceptores/metabolismo , Receptores CXCR/metabolismo
6.
Dev Cell ; 34(4): 475-83, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26256210

RESUMO

Regulated turnover of integrin receptors is essential for cell adhesion and migration. Pathways selectively regulating ß1-integrin recycling are implicated in cancer invasion and metastasis, yet proteins required for the internalization of this pro-invasive integrin remain to be identified. Here, we uncover formin-like 2 (FMNL2) as a critical regulator of ß1-integrin internalization downstream of protein kinase C (PKC). PKCα associates with and phosphorylates FMNL2 at S1072 within its Diaphanous autoregulatory region, leading to the release of formin autoinhibition. Phosphorylation of FMNL2 triggers its rapid relocation and promotes its interaction with the cytoplasmic tails of the α-integrin subunits for ß1-integrin endocytosis. FMNL2 drives ß1-integrin internalization and invasive motility in a phosphorylation-dependent manner, while a FMNL2 mutant defective in actin assembly interferes with ß1-integrin endocytosis and cancer cell invasion. Our data establish a role for FMNL2 in the regulation of ß1-integrin and provide a mechanistic understanding of the function of FMNL2 in cancer invasiveness.


Assuntos
Movimento Celular , Integrina beta1/metabolismo , Proteína Quinase C-alfa/metabolismo , Proteínas/metabolismo , Sequência de Aminoácidos , Citoplasma/metabolismo , Endocitose , Endossomos/metabolismo , Ativação Enzimática , Forminas , Células HEK293 , Células HeLa , Humanos , Integrina beta1/química , Membranas Intracelulares/metabolismo , Dados de Sequência Molecular , Invasividade Neoplásica , Fosforilação , Fosfosserina/metabolismo , Ligação Proteica , Proteínas/química
7.
Methods Cell Biol ; 123: 315-33, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24974035

RESUMO

Structured illumination microscopy (SIM) with a 3-dimensional illumination pattern allows to double image resolution laterally and axially. For cell biologists, SIM may become an attractive tool for refined colocalization studies and to investigate the assembly of components at higher resolution. In this chapter, we focus on the use of a commercial available SIM setup and provide guidance on sample preparation and image acquisition. We present superresolution images of the cytoskeleton in fixed cells and discuss the potential and limitations for SIM in live imaging.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microtúbulos/ultraestrutura , Animais , Artefatos , Linhagem Celular Tumoral , Análise de Fourier , Humanos , Microscopia de Fluorescência/métodos , Neurônios/ultraestrutura , Refratometria , Imagem com Lapso de Tempo
8.
Cytoskeleton (Hoboken) ; 71(3): 195-209, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24520051

RESUMO

The Abelson (Abl) non-receptor tyrosine kinase regulates the cytoskeleton during multiple stages of neural development, from neurulation, to the articulation of axons and dendrites, to synapse formation and maintenance. We previously showed that Abl is genetically linked to the microtubule (MT) plus end tracking protein (+TIP) CLASP in Drosophila. Here we show in vertebrate cells that Abl binds to CLASP and phosphorylates it in response to serum or PDGF stimulation. In vitro, Abl phosphorylates CLASP with a Km of 1.89 µM, indicating that CLASP is a bona fide substrate. Abl-phosphorylated tyrosine residues that we detect in CLASP by mass spectrometry lie within previously mapped F-actin and MT plus end interaction domains. Using purified proteins, we find that Abl phosphorylation modulates direct binding between purified CLASP2 with both MTs and actin. Consistent with these observations, Abl-induced phosphorylation of CLASP2 modulates its localization as well as the distribution of F-actin structures in spinal cord growth cones. Our data suggest that the functional relationship between Abl and CLASP2 is conserved and provides a means to control the CLASP2 association with the cytoskeleton.


Assuntos
Actinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Proto-Oncogênicas c-abl/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Adesão Celular/efeitos dos fármacos , Chlorocebus aethiops , Cones de Crescimento/efeitos dos fármacos , Cones de Crescimento/metabolismo , Células HEK293 , Humanos , Proteínas Associadas aos Microtúbulos/química , Microtúbulos/efeitos dos fármacos , Dados de Sequência Molecular , Fosforilação/efeitos dos fármacos , Fosfotirosina/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Especificidade por Substrato/efeitos dos fármacos , Xenopus
9.
PLoS One ; 7(8): e42991, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22916191

RESUMO

In this paper, we designed a quantitative model of biological membranes by the deposition of planar lipid membranes on solid substrates (called supported membranes), and immobilized biotinylated oligomers of hyaluronic acid (oligo-HA, 6-8 disaccharide units in length) to the membrane surface via neutravidin cross-linkers. By controlling the self-assembly of biotinylated lipid anchors, the mean distance between the oligo-HA molecules on the membrane could be controlled to nm accuracy. The adhesion and motility of pancreatic adenocarcinoma cells expressing different splice variants of the HA-binding cell surface receptor CD44 on these surfaces were investigated quantitatively. The combination of label-free, time-lapse imaging of living cells and statistical analysis suggests that the static morphology (global shape and cytoskeleton remodeling) of cells, their stochastic morphological dynamics, and the probability of directed motion reflect the metastatic behaviour of the cancer cells.


Assuntos
Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/química , Membranas Artificiais , Neoplasias Pancreáticas/metabolismo , Polímeros/química , Isoformas de Proteínas/metabolismo , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Humanos
10.
J Phys Chem B ; 116(28): 8024-30, 2012 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-22715933

RESUMO

We investigated a potential application of hydrophobic poly(n-butyl acrylate) networks (cPnBA) as substrates with tunable elasticity for culturing, maintenance, and regulation of human osteosarcoma cells (U2OS). Nanoindentation experiments with an atomic force microscope revealed that the mechanical properties of cPnBA films are maintained under aqueous conditions, confirming that the substrate elasticity can be controlled simply by the degree of cross-linking, independent from the culture medium. We found that the adhesion U2OS cells to cPnBA substrates could be improved by surface treatments such as oxgen plasma and serum proteins. To determine the strength of cell adhesion, the critical pressure to detach cells from cPnBA substrates was measured using a shock wave induced by an intensive picosecond laser pulse. A monotonic increase in the cell adhesion strength in accordance with the substrate elasticity demonstrated the potential of intrinsically hydrophobic cPnBA as a new class of substrate material with tunable mechanical properties that are not influenced by the culture medium.


Assuntos
Osteossarcoma , Polímeros/química , Acrilatos/química , Adesão Celular , Células Cultivadas , Reagentes de Ligações Cruzadas , Elasticidade , Humanos , Interações Hidrofóbicas e Hidrofílicas , Microscopia Confocal , Osteossarcoma/química , Propriedades de Superfície
11.
BMC Biol ; 8: 154, 2010 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-21190565

RESUMO

BACKGROUND: The uptake of particles by actin-powered invagination of the plasma membrane is common to protozoa and to phagocytes involved in the immune response of higher organisms. The question addressed here is how a phagocyte may use geometric cues to optimize force generation for the uptake of a particle. We survey mechanisms that enable a phagocyte to remodel actin organization in response to particles of complex shape. RESULTS: Using particles that consist of two lobes separated by a neck, we found that Dictyostelium cells transmit signals concerning the curvature of a surface to the actin system underlying the plasma membrane. Force applied to a concave region can divide a particle in two, allowing engulfment of the portion first encountered. The phagosome membrane that is bent around the concave region is marked by a protein containing an inverse Bin-Amphiphysin-Rvs (I-BAR) domain in combination with an Src homology (SH3) domain, similar to mammalian insulin receptor tyrosine kinase substrate p53. Regulatory proteins enable the phagocyte to switch activities within seconds in response to particle shape. Ras, an inducer of actin polymerization, is activated along the cup surface. Coronin, which limits the lifetime of actin structures, is reversibly recruited to the cup, reflecting a program of actin depolymerization. The various forms of myosin-I are candidate motor proteins for force generation in particle uptake, whereas myosin-II is engaged only in retracting a phagocytic cup after a switch to particle release. Thus, the constriction of a phagocytic cup differs from the contraction of a cleavage furrow in mitosis. CONCLUSIONS: Phagocytes scan a particle surface for convex and concave regions. By modulating the spatiotemporal pattern of actin organization, they are capable of switching between different modes of interaction with a particle, either arresting at a concave region and applying force in an attempt to sever the particle there, or extending the cup along the particle surface to identify the very end of the object to be ingested. Our data illustrate the flexibility of regulatory mechanisms that are at the phagocyte's disposal in exploring an environment of irregular geometry.


Assuntos
Forma das Organelas/fisiologia , Fagócitos/fisiologia , Fagocitose/fisiologia , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Dictyostelium/citologia , Dictyostelium/genética , Dictyostelium/metabolismo , Dictyostelium/fisiologia , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Modelos Biológicos , Miosinas/metabolismo , Organismos Geneticamente Modificados , Fagócitos/metabolismo , Fagocitose/genética , Fosfatidilinositóis/metabolismo , Fosfatidilinositóis/fisiologia , Fenômenos Físicos , Multimerização Proteica/fisiologia , Proteínas ras/metabolismo , Proteínas ras/fisiologia
12.
J Neurosci ; 29(46): 14534-44, 2009 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-19923287

RESUMO

The amyloid precursor protein (APP) is anterogradely transported by conventional kinesin in a distinct transport vesicle, but both the biochemical composition of such a vesicle and the specific kinesin-1 motor responsible for transport are poorly defined. APP may be sequentially cleaved by beta- and gamma-secretases leading to accumulation of beta-amyloid (Abeta) peptides in brains of Alzheimer's disease patients, whereas cleavage of APP by alpha-secretases prevents Abeta generation. Here, we demonstrate by time-lapse analysis and immunoisolations that APP is a cargo of a vesicle containing the kinesin heavy chain isoform kinesin-1C, the small GTPase Rab3A, and a specific subset of presynaptic protein components. Moreover, we report that assembly of kinesin-1C and APP in this vesicle type requires Rab3A GTPase activity. Finally, we show cleavage of APP in transport vesicles by alpha-secretase activity, likely mediated by ADAM10. Together, these data indicate that maturation of APP transport vesicles, including recruitment of conventional kinesin, requires Rab3 GTPase activity.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Vesículas Transportadoras/metabolismo , Proteína rab3A de Ligação ao GTP/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Animais , Sequência de Bases , Linhagem Celular Tumoral , Ativação Enzimática/genética , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Humanos , Cinesinas/química , Cinesinas/metabolismo , Cinesinas/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Transporte Proteico/fisiologia , Vesículas Transportadoras/química , Vesículas Transportadoras/genética , Proteína rab3A de Ligação ao GTP/química , Proteína rab3A de Ligação ao GTP/genética
13.
Cell Adh Migr ; 3(4): 373-82, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19855162

RESUMO

Actin waves that travel on the planar membrane of a substrate-attached cell underscore the capability of the actin system to assemble into dynamic structures by the recruitment of proteins from the cytoplasm. The waves have no fixed shape, can reverse their direction of propagation and can fuse or divide. Actin waves separate two phases of the plasma membrane that are distinguished by their lipid composition. The area circumscribed by a wave resembles in its phosphoinositide content the interior of a phagocytic cup, leading us to explore the possibility that actin waves are in-plane phagocytic structures generated without the localized stimulus of an attached particle. Consistent with this view, wave-forming cells were found to exhibit a high propensity for taking up particles. Cells fed rod-shaped particles produced elongated phagocytic cups that displayed a zonal pattern that reflected in detail the actin and lipid pattern of free-running actin waves. Neutrophils and macrophages are known to spread on surfaces decorated with immune complexes, a process that has been interpreted as "frustrated" phagocytosis. We suggest that actin waves enable a phagocyte to scan a surface for particles that might be engulfed.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Dictyostelium/citologia , Fagocitose/fisiologia , Citoesqueleto de Actina/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Adesão Celular/fisiologia , Membrana Celular/fisiologia , Dictyostelium/efeitos dos fármacos , Dictyostelium/fisiologia , Modelos Biológicos , Miosina Tipo II/genética , Fosfatos de Fosfatidilinositol/metabolismo , Pinocitose/fisiologia , Saccharomyces cerevisiae , Tiazolidinas/farmacologia
14.
PLoS Pathog ; 4(3): e1000035, 2008 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-18369481

RESUMO

Persistent infection with the hepatitis C virus (HCV) is a major risk factor for the development of liver cirrhosis and hepatocellular carcinoma. With an estimated about 3% of the world population infected with this virus, the lack of a prophylactic vaccine and a selective therapy, chronic hepatitis C currently is a main indication for liver transplantation. The establishment of cell-based replication and virus production systems has led to first insights into the functions of HCV proteins. However, the role of nonstructural protein 5A (NS5A) in the viral replication cycle is so far not known. NS5A is a membrane-associated RNA-binding protein assumed to be involved in HCV RNA replication. Its numerous interactions with the host cell suggest that NS5A is also an important determinant for pathogenesis and persistence. In this study we show that NS5A is a key factor for the assembly of infectious HCV particles. We specifically identify the C-terminal domain III as the primary determinant in NS5A for particle formation. We show that both core and NS5A colocalize on the surface of lipid droplets, a proposed site for HCV particle assembly. Deletions in domain III of NS5A disrupting this colocalization abrogate infectious particle formation and lead to an enhanced accumulation of core protein on the surface of lipid droplets. Finally, we show that mutations in NS5A causing an assembly defect can be rescued by trans-complementation. These data provide novel insights into the production of infectious HCV and identify NS5A as a major determinant for HCV assembly. Since domain III of NS5A is one of the most variable regions in the HCV genome, the results suggest that viral isolates may differ in their level of virion production and thus in their level of fitness and pathogenesis.


Assuntos
Hepacivirus/fisiologia , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/metabolismo , Montagem de Vírus/fisiologia , Carcinoma Hepatocelular , Linhagem Celular Tumoral , Técnica Indireta de Fluorescência para Anticorpo , Hepacivirus/química , Hepacivirus/ultraestrutura , Antígenos da Hepatite C/análise , Antígenos da Hepatite C/metabolismo , Humanos , Mutação , Estrutura Terciária de Proteína , RNA Viral/metabolismo , Proteínas do Core Viral/análise , Proteínas do Core Viral/metabolismo , Proteínas não Estruturais Virais/química
15.
Mol Biol Cell ; 19(1): 30-40, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17959834

RESUMO

Regulation of cell polarity is a process observed in all cells. During directed migration, cells orientate their microtubule cytoskeleton and the microtubule-organizing-center (MTOC), which involves integrins and downstream Cdc42 and glycogen synthase kinase-3beta activity. However, the contribution of G protein-coupled receptor signal transduction for MTOC polarity is less well understood. Here, we report that the heterotrimeric Galpha(12) and Galpha(13) proteins are necessary for MTOC polarity and microtubule dynamics based on studies using Galpha(12/13)-deficient mouse embryonic fibroblasts. Cell polarization involves the Galpha(12/13)-interacting leukemia-associated RhoGEF (LARG) and the actin-nucleating diaphanous formin mDia1. Interestingly, LARG associates with pericentrin and localizes to the MTOC and along microtubule tracks. We propose that Galpha(12/13) proteins exert essential functions linking extracellular signals to microtubule dynamics and cell polarity via RhoGEF and formin activity.


Assuntos
Proteínas de Transporte/metabolismo , Polaridade Celular , Fibroblastos/citologia , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Microtúbulos/metabolismo , Animais , Antígenos/metabolismo , Movimento Celular , Fibroblastos/enzimologia , Forminas , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Camundongos , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Ligação Proteica , Fatores de Troca de Nucleotídeo Guanina Rho , Proteína rhoA de Ligação ao GTP/metabolismo
16.
Neuron ; 42(6): 913-26, 2004 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-15207236

RESUMO

Axon guidance requires coordinated remodeling of actin and microtubule polymers. Using a genetic screen, we identified the microtubule-associated protein Orbit/MAST as a partner of the Abelson (Abl) tyrosine kinase. We find identical axon guidance phenotypes in orbit/MAST and Abl mutants at the midline, where the repellent Slit restricts axon crossing. Genetic interaction and epistasis assays indicate that Orbit/MAST mediates the action of Slit and its receptors, acting downstream of Abl. We find that Orbit/MAST protein localizes to Drosophila growth cones. Higher-resolution imaging of the Orbit/MAST ortholog CLASP in Xenopus growth cones suggests that this family of microtubule plus end tracking proteins identifies a subset of microtubules that probe the actin-rich peripheral growth cone domain, where guidance signals exert their initial influence on cytoskeletal organization. These and other data suggest a model where Abl acts as a central signaling node to coordinate actin and microtubule dynamics downstream of guidance receptors.


Assuntos
Axônios/fisiologia , Proteínas de Drosophila/fisiologia , Cones de Crescimento/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Proteínas Oncogênicas v-abl/fisiologia , Actinas/metabolismo , Animais , Animais Geneticamente Modificados , Células Cultivadas , Sistema Nervoso Central/citologia , Sistema Nervoso Central/embriologia , Sistema Nervoso Central/metabolismo , Drosophila , Embrião de Mamíferos , Embrião não Mamífero , Regulação da Expressão Gênica , Testes Genéticos/métodos , Proteínas de Fluorescência Verde , Humanos , Imuno-Histoquímica/métodos , Hibridização In Situ , Proteínas Luminescentes/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Modelos Biológicos , Mutação , Proteínas de Neoplasias , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas v-abl/metabolismo , Fenótipo , Fatores de Tempo , Xenopus
17.
J Cell Sci ; 115(Pt 20): 3923-34, 2002 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-12244130

RESUMO

The novel protein Nowa was identified in nematocysts, explosive organelles of Hydra, jellyfish, corals and other CNIDARIA: Biogenesis of these organelles is complex and involves assembly of proteins inside a post-Golgi vesicle to form a double-layered capsule with a long tubule. Nowa is the major component of the outer wall, which is formed very early in morphogenesis. The high molecular weight glycoprotein has a modular structure with an N-terminal sperm coating glycoprotein domain, a central C-type lectin-like domain, and an eightfold repeated cysteine-rich domain at the C-terminus. Interestingly, the cysteine-rich domains are homologous to the cysteine-rich domains of minicollagens. We have previously shown that the cysteines of these minicollagen cysteine-rich domains undergo an isomerization process from intra- to intermolecular disulfide bonds, which mediates the crosslinking of minicollagens to networks in the inner wall of the capsule. The minicollagen cysteine-rich domains present in both proteins provide a potential link between Nowa in the outer wall and minicollagens in the inner wall. We propose a model for nematocyst formation that integrates cytoskeleton rearrangements around the post-Golgi vesicle and protein assembly inside the vesicle to generate a complex structure that is stabilized by intermolecular disulfide bonds.


Assuntos
Colágeno/química , Glicoproteínas/química , Hydra/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/metabolismo , Antígenos de Superfície/química , Antígenos de Superfície/metabolismo , Colágeno/metabolismo , Cisteína/química , Dissulfetos/química , Eletroforese em Gel Bidimensional , Escherichia coli/genética , Glicoproteínas/metabolismo , Glicosilação , Hydra/citologia , Hydra/ultraestrutura , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Modelos Biológicos , Dados de Sequência Molecular , Peso Molecular , Conformação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , RNA Mensageiro/metabolismo , Proteínas Recombinantes/metabolismo , Sequências Repetitivas de Aminoácidos , Homologia de Sequência de Aminoácidos
18.
J Struct Biol ; 137(1-2): 11-4, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12064928

RESUMO

Hydra minicollagen, the shortest collagen known, is an important component of the nematocyst wall, which has a very high tensile strength. It has an unusual structure, with small and closely related Cys-rich domains at both ends of its chains. Three chains are trimerized by a central collagenous domain. Polyhydroxyproline helices connect the Cys-rich domains with the collagenous domain. The minicollagen precursor contains three internal disulfide bridges in each Cys-rich domain and no disulfide bridges between chains of the same trimeric molecule or between different molecules. Biochemical and structural evidence as well as confocal immunofluorescence microscopy points to disulfide-mediated assembly during maturation of nematocysts.


Assuntos
Colágeno/química , Dissulfetos , Hydra/fisiologia , Animais , Cistina/química , Dimerização , Hydra/metabolismo , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA