Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(38): e2412241121, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39254993

RESUMO

Dynein is the primary molecular motor responsible for retrograde intracellular transport of a variety of cargoes, performing successive nanometer-sized steps within milliseconds. Due to the limited spatiotemporal precision of established methods for molecular tracking, current knowledge of dynein stepping is essentially limited to slowed-down measurements in vitro. Here, we use MINFLUX fluorophore localization to directly track CRISPR/Cas9-tagged endogenous dynein with nanometer/millisecond precision in living primary neurons. We show that endogenous dynein primarily takes 8 nm steps, including frequent sideways steps but few backward steps. Strikingly, the majority of direction reversals between retrograde and anterograde movement occurred on the time scale of single steps (16 ms), suggesting a rapid regulatory reversal mechanism. Tug-of-war-like behavior during pauses or reversals was unexpectedly rare. By analyzing the dwell time between steps, we concluded that a single rate-limiting process underlies the dynein stepping mechanism, likely arising from just one adenosine 5'-triphosphate hydrolysis event being required during each step. Our study underscores the power of MINFLUX localization to elucidate the spatiotemporal changes underlying protein function in living cells.


Assuntos
Dineínas , Neurônios , Dineínas/metabolismo , Neurônios/metabolismo , Animais , Sistemas CRISPR-Cas , Trifosfato de Adenosina/metabolismo , Camundongos
2.
Science ; 379(6636): 1004-1010, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36893244

RESUMO

We introduce an interferometric MINFLUX microscope that records protein movements with up to 1.7 nanometer per millisecond spatiotemporal precision. Such precision has previously required attaching disproportionately large beads to the protein, but MINFLUX requires the detection of only about 20 photons from an approximately 1-nanometer-sized fluorophore. Therefore, we were able to study the stepping of the motor protein kinesin-1 on microtubules at up to physiological adenosine-5'-triphosphate (ATP) concentrations. We uncovered rotations of the stalk and the heads of load-free kinesin during stepping and showed that ATP is taken up with a single head bound to the microtubule and that ATP hydrolysis occurs when both heads are bound. Our results show that MINFLUX quantifies (sub)millisecond conformational changes of proteins with minimal disturbance.


Assuntos
Cinesinas , Microscopia de Fluorescência , Trifosfato de Adenosina/metabolismo , Dineínas/metabolismo , Cinesinas/metabolismo , Cinética , Microtúbulos/metabolismo , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Corantes Fluorescentes , Movimento (Física)
3.
Cancer Res ; 81(8): 2234-2245, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33622696

RESUMO

Targeted imaging and therapy approaches based on novel prostate-specific membrane antigen (PSMA) inhibitors have fundamentally changed the treatment regimen of prostate cancer. However, the exact mechanism of PSMA inhibitor internalization has not yet been studied, and the inhibitors' subcellular fate remains elusive. Here, we investigated the intracellular distribution of peptidomimetic PSMA inhibitors and of PSMA itself by stimulated emission depletion (STED) nanoscopy, applying a novel nonstandard live cell staining protocol. Imaging analysis confirmed PSMA cluster formation at the cell surface of prostate cancer cells and clathrin-dependent endocytosis of PSMA inhibitors. Following the endosomal pathway, PSMA inhibitors accumulated in prostate cancer cells at clinically relevant time points. In contrast with PSMA itself, PSMA inhibitors were found to eventually distribute homogeneously in the cytoplasm, a molecular condition that promises benefits for treatment as cytoplasmic and in particular perinuclear enrichment of the radionuclide carriers may better facilitate the radiation-mediated damage of cancerous cells. This study is the first to reveal the subcellular fate of PSMA/PSMA inhibitor complexes at the nanoscale and aims to inspire the development of new approaches in the field of prostate cancer research, diagnostics, and therapeutics. SIGNIFICANCE: This study uses STED fluorescence microscopy to reveal the subcellular fate of PSMA/PSMA inhibitor complexes near the molecular level, providing insights of great clinical interest and suggestive of advantageous targeted therapies. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/8/2234/F1.large.jpg.


Assuntos
Citoplasma/metabolismo , Glutamato Carboxipeptidase II/antagonistas & inibidores , Terapia de Alvo Molecular/métodos , Neoplasias da Próstata/metabolismo , Animais , Antígenos de Superfície/metabolismo , Membrana Celular/metabolismo , Clatrina/metabolismo , Endocitose , Endossomos/metabolismo , Glutamato Carboxipeptidase II/metabolismo , Xenoenxertos , Humanos , Masculino , Camundongos , Microscopia de Fluorescência/métodos , Nanotecnologia/métodos , Peptidomiméticos/farmacocinética , Peptidomiméticos/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Coloração e Rotulagem
4.
ACS Nano ; 10(9): 8215-22, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27517329

RESUMO

Concomitant with human immunodeficiency virus type 1 (HIV-1) budding from a host cell, cleavage of the structural Gag polyproteins by the viral protease (PR) triggers complete remodeling of virion architecture. This maturation process is essential for virus infectivity. Electron tomography provided structures of immature and mature HIV-1 with a diameter of 120-140 nm, but information about the sequence and dynamics of structural rearrangements is lacking. Here, we employed super-resolution STED (stimulated emission depletion) fluorescence nanoscopy of HIV-1 carrying labeled Gag to visualize the virion architecture. The incomplete Gag lattice of immature virions was clearly distinguishable from the condensed distribution of mature protein subunits. Synchronized activation of PR within purified particles by photocleavage of a caged PR inhibitor enabled time-resolved in situ observation of the induction of proteolysis and maturation by super-resolution microscopy. This study shows the rearrangement of subviral structures in a super-resolution light microscope over time, outwitting phototoxicity and fluorophore bleaching through synchronization of a biological process by an optical switch.


Assuntos
Tomografia com Microscopia Eletrônica , HIV-1 , Proteólise , Vírion , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Infecções por HIV , Humanos , Peptídeos
5.
Science ; 338(6106): 524-8, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-23112332

RESUMO

Human immunodeficiency virus type 1 (HIV-1) buds from the cell as an immature particle requiring subsequent proteolysis of the main structural polyprotein Gag for morphological maturation and infectivity. Visualization of the viral envelope (Env) glycoprotein distribution on the surface of individual HIV-1 particles with stimulated emission depletion (STED) superresolution fluorescence microscopy revealed maturation-induced clustering of Env proteins that depended on the Gag-interacting Env tail. Correlation of Env surface clustering with the viral entry efficiency revealed coupling between the viral interior and exterior: Rearrangements of the inner protein lattice facilitated the alteration of the virus surface in preparation for productive entry. We propose that Gag proteolysis-dependent clustering of the sparse Env trimers on the viral surface may be an essential aspect of HIV-1 maturation.


Assuntos
HIV-1/fisiologia , Internalização do Vírus , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , HIV-1/metabolismo , HIV-1/ultraestrutura , Humanos , Microscopia de Fluorescência , Nanotecnologia/métodos , Multimerização Proteica , Proteólise
6.
Opt Express ; 19(6): 5644-57, 2011 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-21445205

RESUMO

We report on a method to reduce the number of state transition cycles that a molecule undergoes in far-field optical nanoscopy of the RESOLFT type, i.e. concepts relying on saturable (fluorescence) state transitions induced by a spatially modulated light pattern. The method is exemplified for stimulated emission depletion (STED) microscopy which uses stimulated emission to transiently switch off the capability of fluorophores to fluoresce. By switching fluorophores off only if there is an adjacent fluorescent feature to be recorded, the method reduces the number of state transitions as well as the average time a dye is forced to reside in an off-state. Thus, the photobleaching of the sample is reduced, while resolution and recording speed are preserved. The power of the method is exemplified by imaging immunolabeled glial cells with up to 8-fold reduced photobleaching.


Assuntos
Nanotecnologia/métodos , Óptica e Fotônica/métodos , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Linhagem Celular Tumoral , Corantes Fluorescentes/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Imageamento Tridimensional , Camundongos , Microesferas , Neurônios/citologia , Neurônios/metabolismo , Fotodegradação
7.
J Cell Sci ; 123(Pt 3): 392-400, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20130140

RESUMO

Promyelocytic leukemia nuclear bodies (PML-NBs) are mobile subnuclear organelles formed by PML and Sp100 protein. They have been reported to have a role in transcription, DNA replication and repair, telomere lengthening, cell cycle control and tumor suppression. We have conducted high-resolution 4Pi fluorescence laser-scanning microscopy studies complemented with correlative electron microscopy and investigations of the accessibility of the PML-NB subcompartment. During interphase PML-NBs adopt a spherical organization characterized by the assembly of PML and Sp100 proteins into patches within a 50- to 100-nm-thick shell. This spherical shell of PML and Sp100 imposes little constraint to the exchange of components between the PML-NB interior and the nucleoplasm. Post-translational SUMO modifications, telomere repeats and heterochromatin protein 1 were found to localize in characteristic patterns with respect to PML and Sp100. From our findings, we derived a model that explains how the three-dimensional organization of PML-NBs serves to concentrate different biological activities while allowing for an efficient exchange of components.


Assuntos
Corpos de Inclusão Intranuclear/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Antígenos Nucleares/metabolismo , Antígenos Nucleares/ultraestrutura , Autoantígenos/metabolismo , Autoantígenos/ultraestrutura , Linhagem Celular Tumoral , Células HeLa , Humanos , Corpos de Inclusão Intranuclear/ultraestrutura , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Modelos Biológicos , Proteínas Nucleares/ultraestrutura , Proteína da Leucemia Promielocítica , Proteína SUMO-1/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Fatores de Transcrição/ultraestrutura , Proteínas Supressoras de Tumor/ultraestrutura , Ubiquitinas/metabolismo
8.
Microsc Res Tech ; 70(1): 1-9, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17131355

RESUMO

The use of high numerical aperture immersion lenses in optical microscopy is compromised by spherical aberrations induced by the refractive index mismatch between the immersion system and the embedding medium of the sample. Especially when imaging >10 micro m deep into the specimen, the refractive index mismatch results in a noticeable loss of image brightness and resolution. A solution to this problem is to adapt the index of the embedding medium to that of the immersion system. Unfortunately, not many mounting media are known that are both index tunable as well as compatible with fluorescence imaging. Here we introduce a nontoxic embedding medium, 2,2'-thiodiethanol (TDE), which, by being miscible with water at any ratio, allows fine adjustment of the average refractive index of the sample ranging from that of water (1.33) to that of immersion oil (1.52). TDE thus enables high resolution imaging deep inside fixed specimens with objective lenses of the highest available aperture angles and has the potential to render glycerol embedding redundant. The refractive index changes due to larger cellular structures, such as nuclei, are largely compensated. Additionally, as an antioxidant, TDE preserves the fluorescence quantum yield of most of the fluorophores. We present the optical and chemical properties of this new medium as well as its application to a variety of differently stained cells and cellular substructures.


Assuntos
Compostos de Sulfidrila , Inclusão do Tecido/métodos , Animais , Linhagem Celular , Células Epiteliais , Corantes Fluorescentes/metabolismo , Imuno-Histoquímica , Microscopia/instrumentação , Microscopia/métodos , Refratometria , Compostos de Sulfidrila/química , Compostos de Sulfidrila/fisiologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA