Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 789, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160478

RESUMO

BACKGROUND: Detecting very minor (< 1%) subpopulations using next-generation sequencing is a critical need for multiple applications, including the detection of drug resistant pathogens and somatic variant detection in oncology. A recently available sequencing approach termed 'sequencing by binding (SBB)' claims to have higher base calling accuracy data "out of the box." This paper evaluates the utility of using SBB for the detection of ultra-rare drug resistant subpopulations in Mycobacterium tuberculosis (Mtb) using a targeted amplicon assay and compares the performance of SBB to single molecule overlapping reads (SMOR) error corrected sequencing by synthesis (SBS) data. RESULTS: SBS displayed an elevated error rate when compared to SMOR error-corrected SBS and SBB techniques. SMOR error-corrected SBS and SBB technologies performed similarly within the linear range studies and error rate studies. CONCLUSIONS: With lower sequencing error rates within SBB sequencing, this technique looks promising for both targeted and unbiased whole genome sequencing, leading to the identification of minor (< 1%) subpopulations without the need for error correction methods.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Humanos , Sequenciamento Completo do Genoma/métodos
2.
Res Sq ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38826386

RESUMO

Detecting very minor (< 1%) subpopulations using next-generation sequencing is a critical need for multiple applications including detection of drug resistant pathogens and somatic variant detection in oncology. To enable these applications, wet lab enhancements and bioinformatic error correction methods have been developed for 'sequencing by synthesis' technology to reduce its inherent sequencing error rate. A recently available sequencing approach termed 'sequencing by binding' claims to have higher base calling accuracy data "out of the box." This paper evaluates the utility of using 'sequencing by binding' for the detection of ultra-rare subpopulations down to 0.001%.

3.
Front Microbiol ; 11: 575455, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281770

RESUMO

Odoribacter splanchnicus, belonging to the order Bacteroidales, is a common, short-chain fatty acid producing member of the human intestinal microbiota. A decreased abundance of Odoribacter has been linked to different microbiota-associated diseases, such as non-alcoholic fatty liver disease, cystic fibrosis and inflammatory bowel disease (IBD). The type strain of O. splanchnicus has been genome-sequenced, but otherwise very little is known about this anaerobic bacterium. The species surfaces in many microbiota studies and, consequently, comprehension on its interactions with the host is needed. In this study, we isolated a novel strain of O. splanchnicus from a healthy fecal donor, identified it by genome sequencing and addressed its adhesive, epithelium reinforcing and immunoregulatory properties. Our results show that O. splanchnicus strain 57 is non-adherent to enterocytes or mucus, does not reinforce nor compromise Caco-2 monolayer integrity and most likely harbors penta-acylated, less endotoxic lipid A as part of its lipopolysaccharide (LPS) structure based on the lack of gene lpxM and in vitro results on low-level NF-κB activity. The studies by transmission electron microscopy revealed that O. splanchnicus produces outer membrane vesicles (OMV). O. splanchnicus cells, culture supernatant i.e., spent medium or OMVs did not induce interleukin-8 (IL-8) response in HT-29 enterocyte cells suggesting a very low proinflammatory capacity. On the contrary, the treatment of HT-29 cells with O. splanchnicus cells, spent medium or OMVs prior to exposure to Escherichia coli LPS elicited a significant decrease in IL-8 production as compared to E. coli LPS treatment alone. Moreover, O. splanchnicus spent supernatant induced IL-10 production by immune cells, suggesting anti-inflammatory activity. Our in vitro findings indicate that O. splanchnicus and its effector molecules transported in OMVs could potentially exert anti-inflammatory action in the gut epithelium. Taken together, O. splanchnicus seems to be a commensal with a primarily beneficial interaction with the host.

4.
Emerg Infect Dis ; 26(5): 937-944, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32310081

RESUMO

Rhizopus spp. fungi are ubiquitous in the environment and a rare but substantial cause of infection in immunosuppressed persons and surgery patients. During 2005-2017, an abnormally high number of Rhizopus infections in surgery patients, with no apparent epidemiologic links, were reported in Argentina. To determine the likelihood of a common source of the cluster, we performed whole-genome sequencing on samples collected during 2006-2014. Most isolates were separated by >60 single-nucleotide polymorphisms, and we found no evidence for recombination or nonneutral mutation accumulation; these findings do not support common source or patient-to-patient transmission. Assembled genomes of most isolates were ≈25 Mbp, and multiple isolates had substantially larger assembled genomes (43-51 Mbp), indicative of infections with strain types that underwent genome expansion. Whole-genome sequencing has become an essential tool for studying epidemiology of fungal infections. Less discriminatory techniques may miss true relationships, possibly resulting in inappropriate attribution of point source.


Assuntos
Mucormicose , Rhizopus , Argentina/epidemiologia , Humanos , Mucormicose/epidemiologia , Rhizopus/genética
5.
J Clin Microbiol ; 54(10): 2582-96, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27510832

RESUMO

Health care-acquired infections (HAIs) kill tens of thousands of people each year and add significantly to health care costs. Multidrug-resistant and epidemic strains are a large proportion of HAI agents, and multidrug-resistant strains of Klebsiella pneumoniae, a leading HAI agent, have caused an urgent public health crisis. In the health care environment, patient colonization by K. pneumoniae precedes infection, and transmission via colonization leads to outbreaks. Periodic patient screening for K. pneumoniae colonization has the potential to curb the number of HAIs. In this report, we describe the design and validation of KlebSeq, a highly informative screening tool that detects Klebsiella species and identifies clinically important strains and characteristics by using highly multiplexed amplicon sequencing without a live-culturing step. We demonstrate the utility of this tool on several complex specimen types, including urine, wound swabs and tissue, and several types of respiratory and fecal specimens, showing K. pneumoniae species and clonal group identification and antimicrobial resistance and virulence profiling, including capsule typing. Use of this amplicon sequencing tool to screen patients for Klebsiella carriage could inform health care staff of the risk of infection and outbreak potential. KlebSeq also serves as a model for next-generation molecular tools for public health and health care, as expansion of this tool can be used for several other HAI agents or applications.


Assuntos
Infecção Hospitalar/diagnóstico , Monitoramento Epidemiológico , Técnicas de Genotipagem/métodos , Infecções por Klebsiella/diagnóstico , Klebsiella pneumoniae/isolamento & purificação , Programas de Rastreamento/métodos , Técnicas de Diagnóstico Molecular/métodos , Farmacorresistência Bacteriana , Humanos , Klebsiella pneumoniae/genética , Análise de Sequência de DNA/métodos , Fatores de Virulência/análise
6.
Nat Rev Genet ; 17(5): 257-71, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26996076

RESUMO

With the emergence of RNA sequencing (RNA-seq) technologies, RNA-based biomolecules hold expanded promise for their diagnostic, prognostic and therapeutic applicability in various diseases, including cancers and infectious diseases. Detection of gene fusions and differential expression of known disease-causing transcripts by RNA-seq represent some of the most immediate opportunities. However, it is the diversity of RNA species detected through RNA-seq that holds new promise for the multi-faceted clinical applicability of RNA-based measures, including the potential of extracellular RNAs as non-invasive diagnostic indicators of disease. Ongoing efforts towards the establishment of benchmark standards, assay optimization for clinical conditions and demonstration of assay reproducibility are required to expand the clinical utility of RNA-seq.


Assuntos
Testes Diagnósticos de Rotina/métodos , Doença/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA/genética , Análise de Sequência de RNA/métodos , Biologia Computacional/métodos , Humanos
7.
Int J Mycobacteriol ; 5 Suppl 1: S27-S28, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28043592

RESUMO

Since 2002, there has been a gradual worldwide 1.3% annual decrease in the incidence of tuberculosis (TB). This is an encouraging statistic; however, it will not achieve the World Health Organization's goal of eliminating TB by 2050, and it is being compounded by the persistent global incidence of drug-resistant tuberculosis (DR-TB) acquired by transmission and by treatment pressure. One key to effectively control tuberculosis and the spread of multiresistant strains is accurate information pertaining to drug resistance and susceptibility. Next-generation sequencing (NGS) has the potential to effectively change global health and the management of TB. Industry has focused primarily on using NGS for oncology diagnostics and human genomics, but the area in which NGS can rapidly impact health care is in the area of infectious disease diagnostics in low- and middle-income countries. To date, there has been a failure as a community to capitalize on the potential of NGS, especially at the reference laboratory level where it can provide actionable information pertaining to treatment options for patients. The rapid evolution of knowledge about the genetic foundations of tuberculosis drug resistance makes sequencing a versatile technology platform for providing rapid, accurate, and actionable results for treating this disease. No "plug-and-play" and "end-to-end" NGS solutions exist that provide clinically relevant sequence data from the Mycobacterium tuberculosis complex genome from primary clinical samples (e.g., sputum) in high-burden country reference laboratories, which is where they are most needed. However, such a system-based solution is underdeveloped by Foundation for Innovative Diagnostics (FIND), in collaboration with partners from academia, nongovernmental organizations, and industry. The solution is modular and is designed and developed to perform targeted amplicon sequencing directly from a patient's primary sputum sample. This solution will initially allow reference laboratories to perform reflex NGS that provides a rapid and comprehensive analysis of a patient's M. tuberculosis complex drug resistance profile, thereby facilitating optimization of a patient's treatment, improving treatment outcomes, and reducing the spread of DR-TB. Such a system could also enable countries to implement culture-free drug resistance surveillance programs, which could bypass the need for expensive culture facilities, decrease a country's dependence on external laboratories, and significantly expand the map of global surveillance capabilities. In addition, the introduction of such a system will provide a foundation for NGS to be used for genotypic testing for human immunodeficiency virus-infected patients, surveillance of other diseases, in-country capability for outbreak discovery and management, and a host of other diagnostic benefits that are currently limited to high-income countries.

8.
Chest ; 143(3): 776-781, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23187746

RESUMO

BACKGROUND: In a patient with positive serum serology for coccidioidomycosis, the differential diagnosis of concurrent pleural effusions can be challenging. We, therefore, sought to clarify the performance characteristics of biochemical, serologic, and nucleic-acid-based testing in an attempt to avoid invasive procedures. The utility of adenosine deaminase (ADA), coccidioidal serology, and polymerase chain reaction (PCR) in the evaluation of pleuropulmonary coccidioidomycosis has not been previously reported. METHODS: Forty consecutive patients evaluated for pleuropulmonary coccidioidomycosis were included. Demographic data, pleural fluid values, culture results, and clinical diagnoses were obtained from patient chart review. ADA testing was performed by ARUP Laboratories, coccidioidal serologic testing was performed by the University of California-Davis coccidioidomycosis serology laboratory, and PCR testing was performed by the Translational Genomics Research Institute using a previously published methodology. RESULTS: Fifteen patients were diagnosed with pleuropulmonary coccidioidomycosis by European Organization for the Research and Treatment of Cancer/Mycoses Study Group criteria. Pleural fluid ADA concentrations were < 40 IU/L in all patients (range, < 1.0-28.6 IU/L; median, 4.7). The sensitivity and specificity of coccidioidal serologic testing was 100% in this study. The specificity of PCR testing was high (100%), although the overall sensitivity remained low, and was comparable to the experience of others in the clinical use of PCR for coccidioidal diagnostics. CONCLUSION: Contrary to prior speculation, ADA levels in pleuropulmonary coccidioidomycosis were not elevated in this study. The sensitivity and specificity of coccidioidal serologic testing in nonserum samples remained high, but the clinical usefulness of PCR testing in pleural fluid was disappointing and was comparable to pleural fluid culture.


Assuntos
Adenosina Desaminase/sangue , Coccidioidomicose/diagnóstico , Pneumopatias Fúngicas/diagnóstico , Derrame Pleural/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Coccidioidomicose/enzimologia , Testes de Fixação de Complemento , Feminino , Humanos , Pneumopatias Fúngicas/enzimologia , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade , Adulto Jovem
9.
Antimicrob Agents Chemother ; 55(10): 4682-91, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21788463

RESUMO

Cyclopropavir (CPV) is active against human cytomegalovirus (CMV), as well as both variants of human herpesvirus 6 and human herpesvirus 8. The mechanism of action of CPV against CMV is similar to that of ganciclovir (GCV) in that it is phosphorylated initially by the CMV UL97 kinase, resulting in inhibition of viral DNA synthesis. Resistance to CPV maps to the UL97 kinase but is associated primarily with H520Q mutations and thus retains good antiviral activity against most GCV-resistant isolates. An examination of CMV-infected cultures treated with CPV revealed unusual cell morphology typically associated with the absence of UL97 kinase activity. A surrogate assay for UL97 kinase activity confirmed that CPV inhibited the activity of this enzyme and that its action was similar to the inhibition seen with maribavir (MBV) in this assay. Combination studies using real-time PCR indicated that, like MBV, CPV also antagonized the efficacy of GCV and were consistent with the observed inhibition of the UL97 kinase. Deep sequencing of CPV-resistant laboratory isolates identified a frameshift mutation in UL27, presumably to compensate for a loss of UL97 enzymatic activity. We conclude that the mechanism of action of CPV against CMV is complex and involves both the inhibition of DNA synthesis and the inhibition of the normal activity of the UL97 kinase.


Assuntos
Antivirais/farmacologia , Ciclopropanos/farmacologia , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/enzimologia , DNA Viral , Guanina/análogos & derivados , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Animais , Sequência de Bases , Benzimidazóis/farmacologia , Células COS , Linhagem Celular , Chlorocebus aethiops , Citomegalovirus/genética , Citomegalovirus/isolamento & purificação , DNA Viral/biossíntese , Farmacorresistência Viral/genética , Mutação da Fase de Leitura , Ganciclovir/farmacologia , Guanina/farmacologia , Herpesvirus Humano 6/efeitos dos fármacos , Herpesvirus Humano 8/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ribonucleosídeos/farmacologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA