Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Nat Struct Mol Biol ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987455

RESUMO

Protein folding in vivo begins during synthesis on the ribosome and is modulated by molecular chaperones that engage the nascent polypeptide. How these features of protein biogenesis influence the maturation pathway of nascent proteins is incompletely understood. Here, we use hydrogen-deuterium exchange mass spectrometry to define, at peptide resolution, the cotranslational chaperone-assisted folding pathway of Escherichia coli dihydrofolate reductase. The nascent polypeptide folds along an unanticipated pathway through structured intermediates not populated during refolding from denaturant. Association with the ribosome allows these intermediates to form, as otherwise destabilizing carboxy-terminal sequences remain confined in the ribosome exit tunnel. Trigger factor binds partially folded states without disrupting their structure, and the nascent chain is poised to complete folding immediately upon emergence of the C terminus from the exit tunnel. By mapping interactions between the nascent chain and ribosomal proteins, we trace the path of the emerging polypeptide during synthesis. Our work reveals new mechanisms by which cellular factors shape the conformational search for the native state.

2.
Nat Chem Biol ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233584

RESUMO

BCL-2-associated X protein (BAX) is a promising therapeutic target for activating or restraining apoptosis in diseases of pathologic cell survival or cell death, respectively. In response to cellular stress, BAX transforms from a quiescent cytosolic monomer into a toxic oligomer that permeabilizes the mitochondria, releasing key apoptogenic factors. The mitochondrial lipid trans-2-hexadecenal (t-2-hex) sensitizes BAX activation by covalent derivatization of cysteine 126 (C126). In this study, we performed a disulfide tethering screen to discover C126-reactive molecules that modulate BAX activity. We identified covalent BAX inhibitor 1 (CBI1) as a compound that selectively derivatizes BAX at C126 and inhibits BAX activation by triggering ligands or point mutagenesis. Biochemical and structural analyses revealed that CBI1 can inhibit BAX by a dual mechanism of action: conformational constraint and competitive blockade of lipidation. These data inform a pharmacologic strategy for suppressing apoptosis in diseases of unwanted cell death by covalent targeting of BAX C126.

3.
Mol Cell ; 83(11): 1903-1920.e12, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37267907

RESUMO

Exercise benefits the human body in many ways. Irisin is secreted by muscle, increased with exercise, and conveys physiological benefits, including improved cognition and resistance to neurodegeneration. Irisin acts via αV integrins; however, a mechanistic understanding of how small polypeptides like irisin can signal through integrins is poorly understood. Using mass spectrometry and cryo-EM, we demonstrate that the extracellular heat shock protein 90α (eHsp90α) is secreted by muscle with exercise and activates integrin αVß5. This allows for high-affinity irisin binding and signaling through an Hsp90α/αV/ß5 complex. By including hydrogen/deuterium exchange data, we generate and experimentally validate a 2.98 Å RMSD irisin/αVß5 complex docking model. Irisin binds very tightly to an alternative interface on αVß5 distinct from that used by known ligands. These data elucidate a non-canonical mechanism by which a small polypeptide hormone like irisin can function through an integrin receptor.


Assuntos
Comunicação Celular , Fibronectinas , Humanos , Fibronectinas/metabolismo , Transdução de Sinais
4.
Amyloid ; 30(4): 364-378, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37216473

RESUMO

BACKGROUND: Immunoglobulin light chain (LC) amyloidosis is a life-threatening disease complicated by vast numbers of patient-specific mutations. We explored 14 patient-derived and engineered proteins related to κ1-family germline genes IGKVLD-33*01 and IGKVLD-39*01. METHODS: Hydrogen-deuterium exchange mass spectrometry analysis of conformational dynamics in recombinant LCs and their fragments was integrated with studies of thermal stability, proteolytic susceptibility, amyloid formation and amyloidogenic sequence propensity. The results were mapped on the structures of native and fibrillary proteins. RESULTS: Proteins from two κ1 subfamilies showed unexpected differences. Compared to their germline counterparts, amyloid LC related to IGKVLD-33*01 was less stable and formed amyloid faster, whereas amyloid LC related to IGKVLD-39*01 had similar stability and formed amyloid slower, suggesting different major factors influencing amyloidogenesis. In 33*01-related amyloid LC, these factors involved destabilization of the native structure and probable stabilization of amyloid. The atypical behavior of 39*01-related amyloid LC stemmed from increased dynamics/exposure of amyloidogenic segments in ßC'V and ßEV that could initiate aggregation and decreased dynamics/exposure near the Cys23-Cys88 disulfide. CONCLUSIONS: The results suggest distinct amyloidogenic pathways for closely related LCs and point to the complementarity-defining regions CDR1 and CDR3, linked via the conserved internal disulfide, as key factors in amyloid formation.


Assuntos
Amiloidose , Amiloidose de Cadeia Leve de Imunoglobulina , Humanos , Cadeias Leves de Imunoglobulina/metabolismo , Regiões Determinantes de Complementaridade/genética , Amiloidose/genética , Amiloidose/metabolismo , Amiloide/metabolismo , Proteínas Amiloidogênicas , Dissulfetos
5.
Nat Commun ; 14(1): 1885, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019905

RESUMO

Proteins often undergo large conformational changes when binding small molecules, but atomic-level descriptions of such events have been elusive. Here, we report unguided molecular dynamics simulations of Abl kinase binding to the cancer drug imatinib. In the simulations, imatinib first selectively engages Abl kinase in its autoinhibitory conformation. Consistent with inferences drawn from previous experimental studies, imatinib then induces a large conformational change of the protein to reach a bound complex that closely resembles published crystal structures. Moreover, the simulations reveal a surprising local structural instability in the C-terminal lobe of Abl kinase during binding. The unstable region includes a number of residues that, when mutated, confer imatinib resistance by an unknown mechanism. Based on the simulations, NMR spectra, hydrogen-deuterium exchange measurements, and thermostability measurements and estimates, we suggest that these mutations confer imatinib resistance by exacerbating structural instability in the C-terminal lobe, rendering the imatinib-bound state energetically unfavorable.


Assuntos
Antineoplásicos , Piperazinas , Mesilato de Imatinib , Piperazinas/farmacologia , Pirimidinas/farmacologia , Benzamidas , Antineoplásicos/farmacologia , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Fusão bcr-abl
6.
bioRxiv ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778378

RESUMO

Immunoglobulin light chain (LC) amyloidosis is a life-threatening disease whose understanding and treatment is complicated by vast numbers of patient-specific mutations. To address molecular origins of the disease, we explored 14 patient-derived and engineered proteins related to κ1-family germline genes IGKVLD-33*01 and IGKVLD-39*01. Hydrogen-deuterium exchange mass spectrometry analysis of local conformational dynamics in full-length recombinant LCs and their fragments was integrated with studies of thermal stability, proteolytic susceptibility, amyloid formation, and amyloidogenic sequence propensities using spectroscopic, electron microscopic and bioinformatics tools. The results were mapped on the atomic structures of native and fibrillary proteins. Proteins from two κ1 subfamilies showed unexpected differences. Compared to their germline counterparts, amyloid LC related to IGKVLD-33*01 was less stable and formed amyloid faster, whereas amyloid LC related to IGKVLD-39*01 had similar stability and formed amyloid slower. These and other differences suggest different major factors influencing amyloid formation. In 33*01-related amyloid LC, these factors involved mutation-induced destabilization of the native structure and probable stabilization of amyloid. The atypical behaviour of 39*01-related amyloid LC tracked back to increased dynamics/exposure of amyloidogenic segments in ßC' V and ßE V that could initiate aggregation, combined with decreased dynamics/exposure near the Cys23-Cys88 disulfide whose rearrangement is rate-limiting to amyloidogenesis. The results suggest distinct amyloidogenic pathways for closely related LCs and point to the antigen-binding, complementarity-determining regions CDR1 and CDR3, which are linked via the conserved internal disulfide, as key factors in amyloid formation by various LCs.

7.
J Chromatogr A ; 1689: 463742, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36586285

RESUMO

Reversed-phase peptide separation in hydrogen deuterium exchange (HDX) mass spectrometry (MS) must be done with conditions where the back exchange is the slowest possible, the so-called quench conditions of low pH and low temperature. To retain maximum deuterium, separation must also be done as quickly as possible. The low temperature (0 °C) of quench conditions complicates the separation and leads primarily to a reduction in separation quality and an increase in chromatographic backpressure. To improve the separation in HDX MS, one could use a longer gradient, smaller particles, a different separation mechanism (for example, capillary electrophoresis), or multi-dimensional separations such as combining ion mobility separation with reversed-phase separation. Another way to improve separations under HDX MS quench conditions is to use a higher flow rate where separation efficiency at 0 °C is more ideal. Higher flow rates, however, require chromatographic systems (both pumps and fittings) with higher backpressure limits. We tested what improvements could be realized with a commercial UPLC/UHPLC system capable of ∼20,000 psi backpressure. We found that a maximum flow rate of 225 µL/min (using a 1 × 50 mm column packed with 1.8 µm particles) was possible and that higher flow rate clearly led to higher peak capacity. HDX MS analysis of both simple and particularly complex samples improved, permitting both shorter separation time, if desired, and providing more deuterium recovery.


Assuntos
Medição da Troca de Deutério , Espectrometria de Massa com Troca Hidrogênio-Deutério , Deutério/química , Medição da Troca de Deutério/métodos , Espectrometria de Massas/métodos , Peptídeos/química , Hidrogênio/química
8.
bioRxiv ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38187560

RESUMO

Inhibition of Bruton's tyrosine kinase (BTK) has proven to be highly effective in the treatment of B-cell malignancies such as chronic lymphocytic leukemia (CLL), autoimmune disorders and multiple sclerosis. Since the approval of the first BTK inhibitor (BTKi), Ibrutinib, several other inhibitors including Acalabrutinib, Zanubrutinib, Tirabrutinib and Pirtobrutinib have been clinically approved. All are covalent active site inhibitors, with the exception of the reversible active site inhibitor Pirtobrutinib. The large number of available inhibitors for the BTK target creates challenges in choosing the most appropriate BTKi for treatment. Side-by-side comparisons in CLL have shown that different inhibitors may differ in their treatment efficacy. Moreover, the nature of the resistance mutations that arise in patients appears to depend on the specific BTKi administered. We have previously shown that Ibrutinib binding to the kinase active site causes unanticipated long-range effects on the global conformation of BTK (Joseph, R.E., et al., 2020, https://doi.org/10.7554/eLife.60470 ). Here we show that binding of each of the five approved BTKi to the kinase active site brings about distinct allosteric changes that alter the conformational equilibrium of full-length BTK. Additionally, we provide an explanation for the resistance mutation bias observed in CLL patients treated with different BTKi and characterize the mechanism of action of two common resistance mutations: BTK T474I and L528W.

9.
Structure ; 30(11): 1508-1517.e3, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36115344

RESUMO

The Src-family kinase Fgr is expressed primarily in myeloid hematopoietic cells and contributes to myeloid leukemia. Here, we present X-ray crystal structures of Fgr bound to the ATP-site inhibitors A-419259 and TL02-59, which show promise as anti-leukemic agents. A-419259 induces a closed Fgr conformation, with the SH3 and SH2 domains engaging the SH2-kinase linker and C-terminal tail, respectively. In the Fgr:A-419259 complex, the activation loop of one monomer inserts into the active site of the other, providing a snapshot of trans-autophosphorylation. By contrast, TL02-59 binding induced SH2 domain displacement from the C-terminal tail and SH3 domain release from the linker. Solution studies using HDX MS were consistent with the crystal structures, with A-419259 reducing and TL02-59 enhancing solvent exposure of the SH3 domain. These structures demonstrate that allosteric connections between the kinase and regulatory domains of Src-family kinases are regulated by the ligand bound to the active site.


Assuntos
Leucemia Mieloide Aguda , Quinases da Família src , Humanos , Quinases da Família src/química , Proteínas Proto-Oncogênicas c-hck/química , Proteínas Proto-Oncogênicas c-hck/metabolismo , Domínios de Homologia de src , Leucemia Mieloide Aguda/tratamento farmacológico , Trifosfato de Adenosina
10.
Nat Commun ; 13(1): 3669, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760926

RESUMO

Very long-chain acyl-CoA dehydrogenase (VLCAD) is an inner mitochondrial membrane enzyme that catalyzes the first and rate-limiting step of long-chain fatty acid oxidation. Point mutations in human VLCAD can produce an inborn error of metabolism called VLCAD deficiency that can lead to severe pathophysiologic consequences, including cardiomyopathy, hypoglycemia, and rhabdomyolysis. Discrete mutations in a structurally-uncharacterized C-terminal domain region of VLCAD cause enzymatic deficiency by an incompletely defined mechanism. Here, we conducted a structure-function study, incorporating X-ray crystallography, hydrogen-deuterium exchange mass spectrometry, computational modeling, and biochemical analyses, to characterize a specific membrane interaction defect of full-length, human VLCAD bearing the clinically-observed mutations, A450P or L462P. By disrupting a predicted α-helical hairpin, these mutations either partially or completely impair direct interaction with the membrane itself. Thus, our data support a structural basis for VLCAD deficiency in patients with discrete mutations in an α-helical membrane-binding motif, resulting in pathologic enzyme mislocalization.


Assuntos
Erros Inatos do Metabolismo Lipídico , Doenças Mitocondriais , Acil-CoA Desidrogenase de Cadeia Longa/genética , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Humanos , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/metabolismo , Doenças Mitocondriais/genética , Doenças Musculares
11.
Elife ; 112022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35532124

RESUMO

Hemostasis in the arterial circulation is mediated by binding of the A1 domain of the ultralong protein von Willebrand factor (VWF) to GPIbα on platelets to form a platelet plug. A1 is activated by tensile force on VWF concatemers imparted by hydrodynamic drag force. The A1 core is protected from force-induced unfolding by a long-range disulfide that links cysteines near its N- and C-termini. The O-glycosylated linkers between A1 and its neighboring domains, which transmit tensile force to A1, are reported to regulate A1 activation for binding to GPIb, but the mechanism is controversial and incompletely defined. Here, we study how these linkers, and their polypeptide and O-glycan moieties, regulate A1 affinity by measuring affinity, kinetics, thermodynamics, hydrogen deuterium exchange (HDX), and unfolding by temperature and urea. The N-linker lowers A1 affinity 40-fold with a stronger contribution from its O-glycan than polypeptide moiety. The N-linker also decreases HDX in specific regions of A1 and increases thermal stability and the energy gap between its native state and an intermediate state, which is observed in urea-induced unfolding. The C-linker also decreases affinity of A1 for GPIbα, but in contrast to the N-linker, has no significant effect on HDX or A1 stability. Among different models for A1 activation, our data are consistent with the model that the intermediate state has high affinity for GPIbα, which is induced by tensile force physiologically and regulated allosterically by the N-linker.


Assuntos
Plaquetas , Fator de von Willebrand , Plaquetas/metabolismo , Polissacarídeos/metabolismo , Ligação Proteica , Ureia/metabolismo , Fator de von Willebrand/metabolismo
12.
Nat Commun ; 13(1): 838, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149681

RESUMO

The proteasome recognizes ubiquitinated proteins and can also edit ubiquitin marks, allowing substrates to be rejected based on ubiquitin chain topology. In yeast, editing is mediated by deubiquitinating enzyme Ubp6. The proteasome activates Ubp6, whereas Ubp6 inhibits the proteasome through deubiquitination and a noncatalytic effect. Here, we report cryo-EM structures of the proteasome bound to Ubp6, based on which we identify mutants in Ubp6 and proteasome subunit Rpt1 that abrogate Ubp6 activation. The Ubp6 mutations define a conserved region that we term the ILR element. The ILR is found within the BL1 loop, which obstructs the catalytic groove in free Ubp6. Rpt1-ILR interaction opens the groove by rearranging not only BL1 but also a previously undescribed network of three interconnected active-site-blocking loops. Ubp6 activation and noncatalytic proteasome inhibition are linked in that they are eliminated by the same mutations. Ubp6 and ubiquitin together drive proteasomes into a unique conformation associated with proteasome inhibition. Thus, a multicomponent allosteric switch exerts simultaneous control over both Ubp6 and the proteasome.


Assuntos
Endopeptidases/química , Endopeptidases/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Domínio Catalítico , Microscopia Crioeletrônica , Citoplasma , Endopeptidases/genética , Complexo de Endopeptidases do Proteassoma/genética , Conformação Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/metabolismo , Proteínas Ubiquitinadas/metabolismo
13.
Mol Cell ; 82(3): 570-584.e8, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34951965

RESUMO

The hexameric Cdc48 ATPase (p97 or VCP in mammals) cooperates with its cofactor Ufd1/Npl4 to extract polyubiquitinated proteins from membranes or macromolecular complexes for degradation by the proteasome. Here, we clarify how the Cdc48 complex unfolds its substrates and translocates polypeptides with branchpoints. The Cdc48 complex recognizes primarily polyubiquitin chains rather than the attached substrate. Cdc48 and Ufd1/Npl4 cooperatively bind the polyubiquitin chain, resulting in the unfolding of one ubiquitin molecule (initiator). Next, the ATPase pulls on the initiator ubiquitin and moves all ubiquitin molecules linked to its C terminus through the central pore of the hexameric double ring, causing transient ubiquitin unfolding. When the ATPase reaches the isopeptide bond of the substrate, it can translocate and unfold both N- and C-terminal segments. Ubiquitins linked to the branchpoint of the initiator dissociate from Ufd1/Npl4 and move outside the central pore, resulting in the release of unfolded, polyubiquitinated substrate from Cdc48.


Assuntos
Poliubiquitina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas Ubiquitinadas/metabolismo , Proteína com Valosina/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Transporte Proteico , Desdobramento de Proteína , Proteólise , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Ubiquitinadas/genética , Ubiquitinação , Proteína com Valosina/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
14.
J Mol Biol ; 434(5): 167422, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34954235

RESUMO

Mutations in PLCγ, a substrate of the tyrosine kinase BTK, are often found in patients who develop resistance to the BTK inhibitor Ibrutinib. However, the mechanisms by which these PLCγ mutations cause Ibrutinib resistance are unclear. Under normal signaling conditions, BTK mediated phosphorylation of Y783 within the PLCγ cSH2-linker promotes the intramolecular association of this site with the adjacent cSH2 domain resulting in active PLCγ. Thus, the cSH2-linker region in the center of the regulatory gamma specific array (γSA) of PLCγ is a key feature controlling PLCγ activity. Even in the unphosphorylated state this linker exists in a conformational equilibrium between free and bound to the cSH2 domain. The position of this equilibrium is optimized within the properly regulated PLCγ enzyme but may be altered in the context of mutations. We therefore assessed the conformational status of four resistance associated mutations within the PLCγ γSA and find that they each alter the conformational equilibrium of the γSA leading to a shift toward active PLCγ. Interestingly, two distinct modes of mutation induced activation are revealed by this panel of Ibrutinib resistance mutations. These findings, along with the recently determined structure of fully autoinhibited PLCγ, provide new insight into the nature of the conformational change that occurs within the γSA regulatory region to affect PLCγ activation. Improving our mechanistic understanding of how B cell signaling escapes Ibrutinib treatment via mutations in PLCγ will aid in the development of strategies to counter drug resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Fosfolipase C gama , Piperidinas , Inibidores de Proteínas Quinases , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia/genética , Tirosina Quinase da Agamaglobulinemia/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Fosfolipase C gama/química , Fosfolipase C gama/genética , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia
15.
J Mol Biol ; 433(24): 167310, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34678302

RESUMO

Immunoglobulin light chain (LC) amyloidosis (AL) is a life-threatening human disease wherein free mono-clonal LCs deposit in vital organs. To determine what makes some LCs amyloidogenic, we explored patient-based amyloidogenic and non-amyloidogenic recombinant LCs from the λ6 subtype prevalent in AL. Hydrogen-deuterium exchange mass spectrometry, structural stability, proteolysis, and amyloid growth studies revealed that the antigen-binding CDR1 loop is the least protected part in the variable domain of λ6 LC, particularly in the AL variant. N32T substitution in CRD1 is identified as a driver of amyloid formation. Substitution N32T increased the amyloidogenic propensity of CDR1 loop, decreased its protection in the native structure, and accelerated amyloid growth in the context of other AL substitutions. The destabilizing effects of N32T propagated across the molecule increasing its dynamics in regions ∼30 Å away from the substitution site. Such striking long-range effects of a conservative point substitution in a dynamic surface loop may be relevant to Ig function. Comparison of patient-derived and engineered proteins showed that N32T interactions with other substitution sites must contribute to amyloidosis. The results suggest that CDR1 is critical in amyloid formation by other λ6 LCs.


Assuntos
Amiloide/metabolismo , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/genética , Amiloidose de Cadeia Leve de Imunoglobulina/genética , Mutação Puntual , Substituição de Aminoácidos , Sequência Conservada , Humanos , Conformação Proteica
16.
Life Sci Alliance ; 4(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33199508

RESUMO

Loss of WRN, a DNA repair helicase, was identified as a strong vulnerability of microsatellite instable (MSI) cancers, making WRN a promising drug target. We show that ATP binding and hydrolysis are required for genome integrity and viability of MSI cancer cells. We report a 2.2-Å crystal structure of the WRN helicase core (517-1,093), comprising the two helicase subdomains and winged helix domain but not the HRDC domain or nuclease domains. The structure highlights unusual features. First, an atypical mode of nucleotide binding that results in unusual relative positioning of the two helicase subdomains. Second, an additional ß-hairpin in the second helicase subdomain and an unusual helical hairpin in the Zn2+ binding domain. Modelling of the WRN helicase in complex with DNA suggests roles for these features in the binding of alternative DNA structures. NMR analysis shows a weak interaction between the HRDC domain and the helicase core, indicating a possible biological role for this association. Together, this study will facilitate the structure-based development of inhibitors against WRN helicase.


Assuntos
Domínio Catalítico , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/genética , Instabilidade de Microssatélites , Helicase da Síndrome de Werner/química , Helicase da Síndrome de Werner/genética , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/genética , Sobrevivência Celular/genética , Cristalização , DNA/metabolismo , Dano ao DNA/genética , Inativação Gênica , Células HCT116 , Humanos , Hidrólise , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Transfecção , Zinco/metabolismo , Quinase 1 Polo-Like
17.
Elife ; 92020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33226337

RESUMO

Bruton's tyrosine kinase (BTK) is targeted in the treatment of B-cell disorders including leukemias and lymphomas. Currently approved BTK inhibitors, including Ibrutinib, a first-in-class covalent inhibitor of BTK, bind directly to the kinase active site. While effective at blocking the catalytic activity of BTK, consequences of drug binding on the global conformation of full-length BTK are unknown. Here, we uncover a range of conformational effects in full-length BTK induced by a panel of active site inhibitors, including large-scale shifts in the conformational equilibria of the regulatory domains. Additionally, we find that a remote Ibrutinib resistance mutation, T316A in the BTK SH2 domain, drives spurious BTK activity by destabilizing the compact autoinhibitory conformation of full-length BTK, shifting the conformational ensemble away from the autoinhibited form. Future development of BTK inhibitors will need to consider long-range allosteric consequences of inhibitor binding, including the emerging application of these BTK inhibitors in treating COVID-19.


Treatments for blood cancers, such as leukemia and lymphoma, rely heavily on chemotherapy, using drugs that target a vulnerable aspect of the cancer cells. B-cells, a type of white blood cell that produces antibodies, require a protein called Bruton's tyrosine kinase, or BTK for short, to survive. The drug ibrutinib (Imbruvica) is used to treat B-cell cancers by blocking BTK. The BTK protein consists of several regions. One of them, known as the kinase domain, is responsible for its activity as an enzyme (which allows it to modify other proteins by adding a 'tag' known as a phosphate group). The other regions of BTK, known as regulatory modules, control this activity. In BTK's inactive form, the regulatory modules attach to the kinase domain, blocking the regulatory modules from interacting with other proteins. When BTK is activated, it changes its conformation so the regulatory regions detach and become available for interactions with other proteins, at the same time exposing the active kinase domain. Ibrutinib and other BTK drugs in development bind to the kinase domain to block its activity. However, it is not known how this binding affects the regulatory modules. Previous efforts to study how drugs bind to BTK have used a version of the protein that only had the kinase domain, instead of the full-length protein. Now, Joseph et al. have studied full-length BTK and how it binds to five different drugs. The results reveal that ibrutinib and another drug called dasatinib both indirectly disrupt the normal position of the regulatory domains pushing BTK toward a conformation that resembles the activated state. By contrast, the three other compounds studied do not affect the inactive structure. Joseph et al. also examined a mutation in BTK that confers resistance against ibrutinib. This mutation increases the activity of BTK by disrupting the inactive structure, leading to B cells surviving better. Understanding how drug resistance mechanisms can work will lead to better drug treatment strategies for cancer. BTK is also a target in other diseases such as allergies or asthma and even COVID-19. If interactions between partner proteins and the regulatory domain are important in these diseases, then they may be better treated with drugs that maintain the regulatory modules in their inactive state. This research will help to design drugs that are better able to control BTK activity.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Domínio Catalítico , Conformação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Adenina/análogos & derivados , Adenina/química , Adenina/metabolismo , Adenina/farmacologia , Tirosina Quinase da Agamaglobulinemia/química , Tirosina Quinase da Agamaglobulinemia/genética , COVID-19/metabolismo , COVID-19/prevenção & controle , COVID-19/virologia , Dasatinibe/química , Dasatinibe/metabolismo , Dasatinibe/farmacologia , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/prevenção & controle , Modelos Moleculares , Estrutura Molecular , Mutação , Piperidinas/química , Piperidinas/metabolismo , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , SARS-CoV-2/fisiologia , Domínios de Homologia de src/genética
18.
Nat Chem Biol ; 16(11): 1218-1226, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32807965

RESUMO

The ubiquitin-proteasome system (UPS) is a highly regulated protein disposal process critical to cell survival. Inhibiting the pathway induces proteotoxic stress and can be an effective cancer treatment. The therapeutic window observed upon proteasomal blockade has motivated multiple UPS-targeting strategies, including preventing ubiquitination altogether. E1 initiates the cascade by transferring ubiquitin to E2 enzymes. A small molecule that engages the E1 ATP-binding site and derivatizes ubiquitin disrupts enzymatic activity and kills cancer cells. However, binding-site mutations cause resistance, motivating alternative approaches to block this promising target. We identified an interaction between the E2 N-terminal alpha-1 helix and a pocket within the E1 ubiquitin-fold domain as a potentially druggable site. Stapled peptides modeled after the E2 alpha-1 helix bound to the E1 groove, induced a consequential conformational change and inhibited E1 ubiquitin thiotransfer, disrupting E2 ubiquitin charging and ubiquitination of cellular proteins. Thus, we provide a blueprint for a distinct E1-targeting strategy to treat cancer.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Linhagem Celular Tumoral , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos , Humanos , Conformação Molecular , Simulação de Acoplamento Molecular , Peptídeos/química , Ligação Proteica , Relação Estrutura-Atividade , Ubiquitina/química , Ubiquitina/genética , Ubiquitinação
19.
Nat Struct Mol Biol ; 27(9): 781-789, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32661419

RESUMO

Apoptosis is regulated by BCL-2 family proteins. Anti-apoptotic members suppress cell death by deploying a surface groove to capture the critical BH3 α-helix of pro-apoptotic members. Cancer cells hijack this mechanism by overexpressing anti-apoptotic BCL-2 family proteins to enforce cellular immortality. We previously identified and harnessed a unique cysteine (C55) in the groove of anti-apoptotic BFL-1 to selectively neutralize its oncogenic activity using a covalent stapled-peptide inhibitor. Here, we find that disulfide bonding between a native cysteine pair at the groove (C55) and C-terminal α9 helix (C175) of BFL-1 operates as a redox switch to control the accessibility of the anti-apoptotic pocket. Reducing the C55-C175 disulfide triggers α9 release, which promotes mitochondrial translocation, groove exposure for BH3 interaction and inhibition of mitochondrial permeabilization by pro-apoptotic BAX. C55-C175 disulfide formation in an oxidative cellular environment abrogates the ability of BFL-1 to bind BH3 domains. Thus, we identify a mechanism of conformational control of BFL-1 by an intramolecular redox switch.


Assuntos
Apoptose , Antígenos de Histocompatibilidade Menor/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Cisteína/química , Cisteína/metabolismo , Dissulfetos/química , Dissulfetos/metabolismo , Células HEK293 , Humanos , Camundongos , Antígenos de Histocompatibilidade Menor/química , Mitocôndrias/metabolismo , Modelos Moleculares , Oxirredução , Conformação Proteica , Conformação Proteica em alfa-Hélice , Proteínas Proto-Oncogênicas c-bcl-2/química
20.
Mol Cell ; 79(1): 68-83.e7, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32533918

RESUMO

BAX is a pro-apoptotic protein that transforms from a cytosolic monomer into a toxic oligomer that permeabilizes the mitochondrial outer membrane. How BAX monomers assemble into a higher-order conformation, and the structural determinants essential to membrane permeabilization, remain a mechanistic mystery. A key hurdle has been the inability to generate a homogeneous BAX oligomer (BAXO) for analysis. Here, we report the production and characterization of a full-length BAXO that recapitulates physiologic BAX activation. Multidisciplinary studies revealed striking conformational consequences of oligomerization and insight into the macromolecular structure of oligomeric BAX. Importantly, BAXO enabled the assignment of specific roles to particular residues and α helices that mediate individual steps of the BAX activation pathway, including unexpected functionalities of BAX α6 and α9 in driving membrane disruption. Our results provide the first glimpse of a full-length and functional BAXO, revealing structural requirements for the elusive execution phase of mitochondrial apoptosis.


Assuntos
Apoptose , Mitocôndrias/patologia , Membranas Mitocondriais/metabolismo , Multimerização Proteica , Proteína X Associada a bcl-2/química , Proteína X Associada a bcl-2/metabolismo , Animais , Transporte Biológico , Permeabilidade da Membrana Celular , Citosol/metabolismo , Humanos , Camundongos , Mitocôndrias/metabolismo , Modelos Moleculares , Conformação Proteica , Proteínas Proto-Oncogênicas c-fos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA