Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Air Waste Manag Assoc ; 68(9): 945-957, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29701537

RESUMO

The Beijing Municipal Environmental Protection Bureau (EPB) is considering strengthening the Emission Standard of Air Pollutants for Stationary Gas Turbines, originally published in 2011 (DB11/847-2011), with a focus on reducing nitrogen oxides (NOx) emissions. A feasibility study was conducted to evaluate the current operation of 12 existing combined-cycle gas turbine power plants and the design of two new plants in Beijing and their emission reduction potential, in comparison with a state-of-the-art power plant in California. The study found that best management practices (BMPs) could potentially improve the emission level of the power plants, and should be implemented to minimize emissions under current design characteristics. These BMPs include (1) more frequent tuning of turbine combustors; (2) onsite testing of natural gas characteristics in comparison to turbine manufacturer's specifics and tuning of turbine to natural gas quality; (3) onsite testing of aqueous ammonia to ensure adequate ammonia concentration in the mixed solution, and the purity of the solution; (4) more careful inspection of the heat recovery steam generator (HRSG), and the selective catalytic reduction (SCR) during operation and maintenance; (5) annual testing of the catalyst coupon on the SCR to ensure catalyst effectiveness; and (6) annual ammonia injection grid (AIG) tuning. The study found that without major modification to the plants, improving the management of the Beijing gas turbine power plants may potentially reduce the current hourly average NOx emission level of 5-10 parts per million (ppm; ranges reflects plant variation) by up to 20%. The exact improvement associated with each BMP for each facility requires more detailed analysis, and requires engagement of turbine, HRSG, and SCR manufacturers. This potential improvement is an important factor to consider when strengthening the emission standard. However, note that with the continuous needs of improving air quality within the area, more expensive control measures, such as retrofitting the turbines or the HRSGs, may be considered. IMPLICATIONS: This study analyzed the potential emission reductions associated with implementing the best management practices (BMPs) on the combined cycle and cogeneration power plants in Beijing. It determined that implementing the BMPs could potentially achieve up to 580 metric tonnes, or 0.6%, reductions of all NOx emissions in Beijing. Many other cities in China and Asia battling air quality issues may find the information useful in order to evaluate the emission reduction potential of their own gas turbine power plants.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle , Recuperação e Remediação Ambiental/métodos , Centrais Elétricas , Poluição do Ar/análise , Pequim , California , Monitoramento Ambiental , Recuperação e Remediação Ambiental/normas , Estudos de Viabilidade
2.
J Air Waste Manag Assoc ; 57(1): 79-93, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17269233

RESUMO

With the recent focus on fine particle matter (PM2.5), new, self-consistent data are needed to characterize emissions from combustion sources. Such data are necessary for health assessment and air quality modeling. To address this need, emissions data for gas-fired combustors are presented here, using dilution sampling as the reference. The dilution method allows for collection of emitted particles under conditions simulating cooling and dilution during entry from the stack into the air. The sampling and analysis of the collected particles in the presence of precursor gases, SO2 nitrogen oxide, volatile organic compound, and NH3 is discussed; the results include data from eight gas fired units, including a dual-fuel institutional boiler and a diesel engine powered electricity generator. These data are compared with results in the literature for heavy-duty diesel vehicles and stationary sources using coal or wood as fuels. The results show that the gas-fired combustors have very low PM2.5 mass emission rates in the range of approximately 10(-4) lb/million Btu (MMBTU) compared with the diesel backup generator with particle filter, with approximately 5 x 10(-3) lb/MMBTU. Even higher mass emission rates are found in coal-fired systems, with rates of approximately 0.07 lb/MMBTU for a bag-filter-controlled pilot unit burning eastern bituminous coal. The characterization of PM2.5 chemical composition from the gas-fired units indicates that much of the measured primary particle mass in PM2.5 samples is organic or elemental carbon and, to a much less extent, sulfate. Metal emissions are quite low compared with the diesel engines and the coal- or wood-fueled combustors. The metals found in the gas-fired combustor particles are low in concentration, similar in concentration to ambient particles. The interpretation of the particulate carbon emissions is complicated by the fact that an approximately equal amount of particulate carbon (mainly organic carbon) is found on the particle collector and a backup filter. It is likely that measurement artifacts, mostly adsorption of volatile organic compounds on quartz filters, are positively biasing "true" particulate carbon emission results.


Assuntos
Poluentes Ocupacionais do Ar/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Combustíveis Fósseis , Óleos Combustíveis , Resíduos Industriais/análise , Gasolina
3.
J Air Waste Manag Assoc ; 54(12): 1494-505, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15648387

RESUMO

Currently, we have limited knowledge of the physical and chemical properties of emitted primary combustion aerosols and the changes in those properties caused by nucleation, condensation growth of volatile species, and particle coagulations under dilution and cooling in the ambient air. A dilution chamber was deployed to sample exhaust from a pilot-scale furnace burning various fuels at a nominal heat input rate of 160 kW/h(-1) and 3% excess oxygen. The formation mechanisms of particles smaller than 420 nm in electrical mobility diameter were experimentally investigated by measurement with a Scanning Mobility Particle Sizer (SMPS) as a function of aging times, dilution air ratios, combustion exhaust temperatures, and fuel types. Particle formation in the dilution process is a complex mixture of nucleation, coagulation, and condensational growth, depending on the concentrations of available condensable species and solid or liquid particles (such as soot, ash) in combustion exhausts. The measured particle size distributions in number concentrations measured show peaks of particle number concentrations for medium sulfur bituminous coal, No. 6 fuel oil, and natural gas at 40-50 nm, 70-100 nm, and 15-25 nm, respectively. For No. 6 fuel oil and coal, the particle number concentration is constant in the range of a dilution air ratio of 50, but the number decreases as the dilution air ratio decreases to 10. However, for natural gas, the particle number concentration is higher at a dilution air ratio of 10 and decreases at dilution air ratios of 20-50. At a dilution air ratio of 10, severe particle coagulation occurs in a relatively short time. Samples taken at different combustion exhaust temperatures for these fuel types show higher particle number concentrations at 645 K than at 450 K. As the aging time of particles increases, the particles increase in size and the number concentrations decrease. The largest gradient of particle number distribution occurs within the first 10 sec after dilution but shows only minor differences between 10 and 80 sec. The lifetimes of the ultrafine particles are relatively short, with a scale on the order of a few seconds. Results from this study suggest that an aging time of 10 sec and a dilution air ratio of 20 are sufficient to obtain representative primary particle emission samples from stationary combustion sources.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Carvão Mineral , Difusão , Monitoramento Ambiental/métodos , Gases , Incineração , Tamanho da Partícula , Petróleo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA