Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
JAMA Ophthalmol ; 142(3): 243-247, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38358749

RESUMO

Importance: Strabismus is a common ocular disorder of childhood. There is a clear genetic component to strabismus, but it is not known if esotropia and exotropia share genetic risk factors. Objective: To determine whether genetic duplications associated with esotropia are also associated with exotropia. Design, Setting, and Participants: This was a cross-sectional study conducted from November 2005 to December 2023. Individuals with constant or intermittent exotropia of any magnitude or a history of surgery for exotropia were recruited from pediatric ophthalmic practices. Data were analyzed from March to December 2023. Exposure: Genetic duplication. Main Outcomes and Measures: Presence of genetic duplications at 2p11.2, 4p15.2, and 10q11.22 assessed by digital droplet polymerase chain reaction. Orthoptic measurements and history of strabismus surgery were performed. Results: A total of 234 individuals (mean [SD] age, 19.5 [19.0] years; 127 female [54.3%]) were included in this study. The chromosome 2 duplication was present in 1.7% of patients with exotropia (4 of 234; P = .40), a similar proportion to the 1.4% of patients with esotropia (23 of 1614) in whom it was previously reported and higher than the 0.1% of controls (4 of 3922) previously reported (difference, 1.6%; 95% CI, 0%-3.3%; P < .001). The chromosome 4 duplication was present in 3.0% of patients with exotropia (7 of 234; P = .10), a similar proportion to the 1.7% of patients with esotropia (27 of 1614) and higher than the 0.2% of controls (6 of 3922) in whom it was previously reported (difference, 2.8%; 95% CI, 0.6%-5.0%; P < .001). The chromosome 10 duplication was present in 6.0% of patients with exotropia (14 of 234; P = .08), a similar proportion to the 4% of patients with esotropia (64 of 1614) and higher than the 0.4% of controls (18 of 3922) in whom it was previously reported (difference, 5.6%; 95% CI, 2.5%-8.6%; P < .001). Individuals with a duplication had higher mean (SD) magnitude of deviation (31 [13] vs 22 [14] prism diopters [PD]; difference, 9 PD; 95% CI, 1-16 PD; P = .03), were more likely to have constant (vs intermittent) exotropia (70% vs 29%; difference, 41%; 95% CI, 20.8%-61.2%; P < .001), and had a higher rate of exotropia surgery than those without a duplication (58% vs 34%; difference, 24%; 95% CI, 3%-44%; P = .02). Conclusions and Relevance: In this cross-sectional study, results suggest that the genetic duplications on chromosomes 2, 4, and 10 were risk factors for exotropia as well as esotropia. These findings support the possibility that esotropia and exotropia have shared genetic risk factors. Whether esotropia or exotropia develops in the presence of these duplications may be influenced by other shared or independent genetic variants or by environmental factors.


Assuntos
Esotropia , Exotropia , Estrabismo , Humanos , Criança , Feminino , Adulto Jovem , Adulto , Esotropia/genética , Esotropia/cirurgia , Exotropia/genética , Estudos Transversais , Variações do Número de Cópias de DNA , Músculos Oculomotores/cirurgia , Genótipo , Fenótipo
2.
J AAPOS ; 28(1): 103812, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38219920

RESUMO

PURPOSE: To better characterize the correlation of bony orbital dysmorphology with strabismus in craniosynostosis. METHODS: The medical records of patients with craniosynostosis with and without strabismus seen at Rady Children's Hospital (San Diego, CA) from March 2020 to January 2022 were reviewed retrospectively in this masked, case-control study. Computed tomography scans of the orbits were analyzed to obtain dimensions of the orbital entrance and orbital cone. Primary outcome was correlation of strabismus with orbital measurements. RESULTS: A total of 30 orbits from 15 patients with strabismus and 15 controls were included. Craniofacial disorders included in the study were nonsyndromic craniosynostosis (63%), Crouzon syndrome (13%), Apert syndrome (13%), and Pfeiffer syndrome (10%). Orbital index (height:width ratio) (P = 0.01) and medial orbital wall angle (P = 0.04) were found to differ significantly between the strabismus and control groups. CONCLUSIONS: In our small cohort, bony orbital dimensions, including the ratio of orbital height to width and bowing of the medial orbital wall, were associated with strabismus in craniosynostosis.


Assuntos
Acrocefalossindactilia , Craniossinostoses , Estrabismo , Criança , Humanos , Estudos de Casos e Controles , Estudos Retrospectivos , Craniossinostoses/complicações , Craniossinostoses/diagnóstico por imagem , Acrocefalossindactilia/complicações , Estrabismo/etiologia , Estrabismo/complicações , Órbita/diagnóstico por imagem
3.
Dev Biol ; 490: 126-133, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35944701

RESUMO

Heterozygous loss of function mutations in TWIST1 cause Saethre-Chotzen syndrome, which is characterized by craniosynostosis, facial asymmetry, ptosis, strabismus, and distinctive ear appearance. Individuals with syndromic craniosynostosis have high rates of strabismus and ptosis, but the underlying pathology is unknown. Some individuals with syndromic craniosynostosis have been noted to have absence of individual extraocular muscles or abnormal insertions of the extraocular muscles on the globe. Using conditional knock-out alleles for Twist1 in cranial mesenchyme, we test the hypothesis that Twist1 is required for extraocular muscle organization and position, attachment to the globe, and/or innervation by the cranial nerves. We examined the extraocular muscles in conditional Twist1 knock-out animals using Twist2-cre and Pdgfrb-cre drivers. Both are expressed in cranial mesoderm and neural crest. Conditional inactivation of Twist1 using these drivers leads to disorganized extraocular muscles that cannot be reliably identified as specific muscles. Tendons do not form normally at the insertion and origin of these dysplastic muscles. Knock-out of Twist1 expression in tendon precursors, using scleraxis-cre, however, does not alter EOM organization. Furthermore, developing motor neurons, which do not express Twist1, display abnormal axonal trajectories in the orbit in the presence of dysplastic extraocular muscles. Strabismus in individuals with TWIST1 mutations may therefore be caused by abnormalities in extraocular muscle development and secondary abnormalities in innervation and tendon formation.


Assuntos
Acrocefalossindactilia , Craniossinostoses , Estrabismo , Proteína 1 Relacionada a Twist , Acrocefalossindactilia/complicações , Acrocefalossindactilia/genética , Animais , Craniossinostoses/genética , Camundongos , Crista Neural , Músculos Oculomotores , Estrabismo/complicações , Proteína 1 Relacionada a Twist/genética
4.
J Neuropathol Exp Neurol ; 80(10): 944-954, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34498062

RESUMO

The analysis of nuclear morphology plays an important role in glioma diagnosis and grading. We previously described intranuclear rods (rods) labeled with the SDL.3D10 monoclonal antibody against class III beta-tubulin (TUBB3) in human ependymomas. In a cohort of adult diffuse gliomas, we identified nuclear rods in 71.1% of IDH mutant lower-grade gliomas and 13.7% of IDH wild-type glioblastomas (GBMs). The presence of nuclear rods was associated with significantly longer postoperative survival in younger (≤65) GBM patients. Consistent with this, nuclear rods were mutually exclusive with Ki67 staining and their prevalence in cell nuclei inversely correlated with the Ki67 proliferation index. In addition, rod-containing nuclei showed a relative depletion of lamin B1, suggesting a possible association with senescence. To gain insight into their functional significance, we addressed their antigenic properties. Using a TUBB3-null mouse model, we demonstrate that the SDL.3D10 antibody does not bind TUBB3 in rods but recognizes an unknown antigen. In the present study, we show that rods show immunoreactivity for the nucleotide synthesizing enzymes inosine monophosphate dehydrogenase (IMPDH) and cytidine triphosphate synthetase. By analogy with the IMPDH filaments that have been described previously, we postulate that rods regulate the activity of nucleotide-synthesizing enzymes in the nucleus by sequestration, with important implications for glioma behavior.


Assuntos
Neoplasias Encefálicas/patologia , Núcleo Celular/patologia , Glioma/patologia , IMP Desidrogenase , Tubulina (Proteína) , Animais , Neoplasias Encefálicas/metabolismo , Núcleo Celular/metabolismo , Estudos de Coortes , Glioma/metabolismo , Humanos , IMP Desidrogenase/metabolismo , Camundongos , Camundongos Knockout , Tubulina (Proteína)/deficiência , Tubulina (Proteína)/metabolismo
5.
Eur J Hum Genet ; 29(5): 816-826, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33649541

RESUMO

Variants in multiple tubulin genes have been implicated in neurodevelopmental disorders, including malformations of cortical development (MCD) and congenital fibrosis of the extraocular muscles (CFEOM). Distinct missense variants in the beta-tubulin encoding genes TUBB3 and TUBB2B cause MCD, CFEOM, or both, suggesting substitution-specific mechanisms. Variants in the alpha tubulin-encoding gene TUBA1A have been associated with MCD, but not with CFEOM. Using exome sequencing (ES) and genome sequencing (GS), we identified 3 unrelated probands with CFEOM who harbored novel heterozygous TUBA1A missense variants c.1216C>G, p.(His406Asp); c.467G>A, p.(Arg156His); and c.1193T>G, p.(Met398Arg). MRI revealed small oculomotor-innervated muscles and asymmetrical caudate heads and lateral ventricles with or without corpus callosal thinning. Two of the three probands had MCD. Mutated amino acid residues localize either to the longitudinal interface at which α and ß tubulins heterodimerize (Met398, His406) or to the lateral interface at which tubulin protofilaments interact (Arg156), and His406 interacts with the motor domain of kinesin-1. This series of individuals supports TUBA1A variants as a cause of CFEOM and expands our knowledge of tubulinopathies.


Assuntos
Fibrose/genética , Malformações do Desenvolvimento Cortical/genética , Oftalmoplegia/genética , Tubulina (Proteína)/genética , Adolescente , Sítios de Ligação , Criança , Feminino , Fibrose/patologia , Heterozigoto , Humanos , Cinesinas/metabolismo , Masculino , Malformações do Desenvolvimento Cortical/patologia , Mutação de Sentido Incorreto , Oftalmoplegia/patologia , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
6.
Br J Ophthalmol ; 104(4): 547-550, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31302631

RESUMO

BACKGROUND: The genetic basis of monocular elevation deficiency (MED) is unclear. It has previously been considered to arise due to a supranuclear abnormality. METHODS: Two brothers with MED were referred to Leicester Royal Infirmary, UK from the local opticians. Their father had bilateral ptosis and was unable to elevate both eyes, consistent with the diagnosis of congenital fibrosis of extraocular muscles (CFEOM). Candidate sequencing was performed in all family members. RESULTS: Both affected siblings (aged 7 and 12 years) were unable to elevate the right eye. Their father had bilateral ptosis, left esotropia and bilateral limitation of elevation. Chin up head posture was present in the older sibling and the father. Bell's phenomenon and vertical rotational vestibulo-ocular reflex were absent in the right eye for both children. Mild bilateral facial nerve palsy was present in the older sibling and the father. Both siblings had slight difficulty with tandem gait. MRI revealed hypoplastic oculomotor nerve. Left anterior insular focal cortical dysplasia was seen in the older sibling. Sequencing of TUBB3 revealed a novel heterozygous variant (c.1263G>C, p.E421D) segregating with the phenotype. This residue is in the C-terminal H12 α-helix of ß-tubulin and is one of three putative kinesin binding sites. CONCLUSION: We show that familial MED can arise from a TUBB3 variant and could be considered a limited form of CFEOM. Neurological features such as mild facial palsy and cortical malformations can be present in patients with MED. Thus, in individuals with congenital MED, consideration may be made for TUBB3 mutation screening.


Assuntos
Fibrose/genética , Mutação/genética , Transtornos da Motilidade Ocular/genética , Oftalmoplegia/genética , Tubulina (Proteína)/genética , Adulto , Córtex Cerebral/diagnóstico por imagem , Criança , Análise Mutacional de DNA , Fibrose/diagnóstico , Humanos , Imageamento por Ressonância Magnética , Masculino , Transtornos da Motilidade Ocular/diagnóstico , Oftalmoplegia/diagnóstico , Linhagem , Irmãos
7.
J AAPOS ; 23(5): 253.e1-253.e6, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31541710

RESUMO

PURPOSE: To detail surgical strategy and strabismus outcomes in a genetically defined cohort of patients with congenital fibrosis of the extraocular muscles (CFEOM). METHODS: A total of 13 patients with genetically confirmed CFEOM (via genetic testing for mutations in KIF21A, PHOX2A, and TUBB3) were retrospectively identified after undergoing strabismus surgery at Boston Children's Hospital and surgical outcomes were compared. RESULTS: Age at first surgery ranged from 11 months to 63 years, with an average of 3 strabismus procedures per patient. Ten patients had CFEOM1, of whom 9 had the KIF21A R954W amino acid substitution and 1 had the M947T amino acid substitution. Of the 3 with CFEOM3, 2 had the TUBB3 E410K amino acid substitution, and 1 had a previously unreported E410V amino acid substitution. CFEOM1 patients all underwent at least 1 procedure to address chin-up posture. Chin-up posture improved from 24° ± 8° before surgery to 10.0° ± 8° postoperatively (P < 0.001). Three CFEOM1 patients developed exotropia after vertical muscle surgery alone; all had the R954W amino acid substitution. Postoperatively, 1 CFEOM1 patient developed a corneal ulcer. All CFEOM3 patients appeared to have underlying exposure keratopathy, successfully treated with prosthetic replacement of the ocular surface ecosystem (PROSE) lens in 2 patients. CONCLUSIONS: CFEOM is a complex strabismus disorder for which surgical management is difficult. Despite an aggressive surgical approach, multiple procedures may be necessary to achieve a desirable surgical effect. Knowledge of the underlying genetic diagnosis may help to inform surgical management.


Assuntos
Fibrose/cirurgia , Proteínas de Homeodomínio/genética , Cinesinas/genética , Músculos Oculomotores/cirurgia , Procedimentos Cirúrgicos Oftalmológicos , Oftalmoplegia/cirurgia , Estrabismo/cirurgia , Tubulina (Proteína)/genética , Adulto , Criança , Pré-Escolar , Feminino , Fibrose/genética , Fibrose/fisiopatologia , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mutação , Músculos Oculomotores/fisiopatologia , Oftalmoplegia/genética , Oftalmoplegia/fisiopatologia , Estrabismo/fisiopatologia , Resultado do Tratamento
8.
Genet Med ; 21(12): 2734-2743, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31263216

RESUMO

PURPOSE: We observed four individuals in two unrelated but consanguineous families from Portugal and Brazil affected by early-onset retinal degeneration, sensorineural hearing loss, microcephaly, intellectual disability, and skeletal dysplasia with scoliosis and short stature. The phenotype precisely matched that of an individual of Azorean descent published in 1986 by Liberfarb and coworkers. METHODS: Patients underwent specialized clinical examinations (including ophthalmological, audiological, orthopedic, radiological, and developmental assessment). Exome and targeted sequencing was performed on selected individuals. Minigene constructs were assessed by quantitative polymerase chain reaction (qPCR) and Sanger sequencing. RESULTS: Affected individuals shared a 3.36-Mb region of autozygosity on chromosome 22q12.2, including a 10-bp deletion (NM_014338.3:c.904-12_904-3delCTATCACCAC), immediately upstream of the last exon of the PISD (phosphatidylserine decarboxylase) gene. Sequencing of PISD from paraffin-embedded tissue from the 1986 case revealed the identical homozygous variant. In HEK293T cells, this variant led to aberrant splicing of PISD transcripts. CONCLUSION: We have identified the genetic etiology of the Liberfarb syndrome, affecting brain, eye, ear, bone, and connective tissue. Our work documents the migration of a rare Portuguese founder variant to two continents and highlights the link between phospholipid metabolism and bone formation, sensory defects, and cerebral development, while raising the possibility of therapeutic phospholipid replacement.


Assuntos
Carboxiliases/genética , Carboxiliases/metabolismo , Adolescente , Adulto , Brasil , Exoma/genética , Feminino , Genótipo , Células HEK293 , Perda Auditiva Neurossensorial/genética , Humanos , Deficiência Intelectual/genética , Masculino , Microcefalia/genética , Anormalidades Musculoesqueléticas/genética , Osteocondrodisplasias/genética , Linhagem , Fenótipo , Portugal , Degeneração Retiniana/genética , Síndrome , Adulto Jovem
9.
Cereb Cortex ; 29(8): 3561-3576, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-30272120

RESUMO

Seven unrelated individuals (four pediatric, three adults) with the TUBB3 E410K syndrome, harboring identical de novo heterozygous TUBB3 c.1228 G>A mutations, underwent neuropsychological testing and neuroimaging. Despite the absence of cortical malformations, they have intellectual and social disabilities. To search for potential etiologies for these deficits, we compared their brain's structural and white matter organization to 22 controls using structural and diffusion magnetic resonance imaging. Diffusion images were processed to calculate fractional anisotropy (FA) and perform tract reconstructions. Cortical parcellation-based network analysis and gyral topology-based FA analyses were performed. Major interhemispheric, projection and intrahemispheric tracts were manually segmented. Subjects had decreased corpus callosum volume and decreased network efficiency. While only pediatric subjects had diffuse decreases in FA predominantly affecting mid- and long-range tracts, only adult subjects had white matter volume loss associated with decreased cortical surface area. All subjects showed aberrant corticospinal tract trajectory and bilateral absence of the dorsal language network long segment. Furthermore, pediatric subjects had more tracts with decreased FA compared with controls than did adult subjects. These findings define a TUBB3 E410K neuroimaging endophenotype and lead to the hypothesis that the age-related changes are due to microscopic intrahemispheric misguided axons that are pruned during maturation.


Assuntos
Transtorno do Espectro Autista/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Corpo Caloso/diagnóstico por imagem , Deficiência Intelectual/diagnóstico por imagem , Tratos Piramidais/diagnóstico por imagem , Tubulina (Proteína)/genética , Substância Branca/diagnóstico por imagem , Adulto , Fatores Etários , Anisotropia , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Transtorno do Espectro Autista/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Estudos de Casos e Controles , Córtex Cerebral/patologia , Criança , Corpo Caloso/patologia , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Endofenótipos , Feminino , Fibrose/diagnóstico por imagem , Fibrose/genética , Fibrose/patologia , Fibrose/fisiopatologia , Heterozigoto , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Deficiência Intelectual/fisiopatologia , Síndrome de Kallmann/diagnóstico por imagem , Síndrome de Kallmann/genética , Síndrome de Kallmann/patologia , Síndrome de Kallmann/fisiopatologia , Masculino , Mutação , Vias Neurais/diagnóstico por imagem , Vias Neurais/patologia , Testes Neuropsicológicos , Oftalmoplegia/diagnóstico por imagem , Oftalmoplegia/genética , Oftalmoplegia/patologia , Oftalmoplegia/fisiopatologia , Tamanho do Órgão , Tratos Piramidais/patologia , Síndrome , Substância Branca/patologia , Adulto Jovem
10.
Am J Hum Genet ; 103(6): 1009-1021, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30471716

RESUMO

To date, mutations in 15 actin- or microtubule-associated genes have been associated with the cortical malformation lissencephaly and variable brainstem hypoplasia. During a multicenter review, we recognized a rare lissencephaly variant with a complex brainstem malformation in three unrelated children. We searched our large brain-malformation databases and found another five children with this malformation (as well as one with a less severe variant), analyzed available whole-exome or -genome sequencing data, and tested ciliogenesis in two affected individuals. The brain malformation comprised posterior predominant lissencephaly and midline crossing defects consisting of absent anterior commissure and a striking W-shaped brainstem malformation caused by small or absent pontine crossing fibers. We discovered heterozygous de novo missense variants or an in-frame deletion involving highly conserved zinc-binding residues within the GAR domain of MACF1 in the first eight subjects. We studied cilium formation and found a higher proportion of mutant cells with short cilia than of control cells with short cilia. A ninth child had similar lissencephaly but only subtle brainstem dysplasia associated with a heterozygous de novo missense variant in the spectrin repeat domain of MACF1. Thus, we report variants of the microtubule-binding GAR domain of MACF1 as the cause of a distinctive and most likely pathognomonic brain malformation. A gain-of-function or dominant-negative mechanism appears likely given that many heterozygous mutations leading to protein truncation are included in the ExAC Browser. However, three de novo variants in MACF1 have been observed in large schizophrenia cohorts.


Assuntos
Orientação de Axônios/genética , Movimento Celular/genética , Sequência Conservada/genética , Proteínas dos Microfilamentos/genética , Mutação/genética , Neurônios/patologia , Zinco/metabolismo , Adolescente , Tronco Encefálico/patologia , Criança , Pré-Escolar , Cílios/genética , Feminino , Humanos , Lisencefalia/genética , Masculino , Microtúbulos/genética , Malformações do Sistema Nervoso/genética
11.
Hum Mutat ; 39(1): 23-39, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29068161

RESUMO

The deleted in colorectal cancer (DCC) gene encodes the netrin-1 (NTN1) receptor DCC, a transmembrane protein required for the guidance of commissural axons. Germline DCC mutations disrupt the development of predominantly commissural tracts in the central nervous system (CNS) and cause a spectrum of neurological disorders. Monoallelic, missense, and predicted loss-of-function DCC mutations cause congenital mirror movements, isolated agenesis of the corpus callosum (ACC), or both. Biallelic, predicted loss-of-function DCC mutations cause developmental split brain syndrome (DSBS). Although the underlying molecular mechanisms leading to disease remain poorly understood, they are thought to stem from reduced or perturbed NTN1 signaling. Here, we review the 26 reported DCC mutations associated with abnormal CNS development in humans, including 14 missense and 12 predicted loss-of-function mutations, and discuss their associated clinical characteristics and diagnostic features. We provide an update on the observed genotype-phenotype relationships of congenital mirror movements, isolated ACC and DSBS, and correlate this to our current understanding of the biological function of DCC in the development of the CNS. All mutations and their associated phenotypes were deposited into a locus-specific LOVD (https://databases.lovd.nl/shared/genes/DCC).


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Genes DCC , Estudos de Associação Genética , Mutação , Fenótipo , Agenesia do Corpo Caloso , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Bases de Dados Genéticas , Humanos , Imageamento por Ressonância Magnética , Modelos Moleculares , Netrina-1/química , Netrina-1/metabolismo , Ligação Proteica , Conformação Proteica , Domínios Proteicos/genética , Síndrome
12.
Am J Med Genet A ; 173(10): 2763-2771, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28777491

RESUMO

Horstick et al. (2013) previously reported a homozygous p.Trp284Ser variant in STAC3 as the cause of Native American myopathy (NAM) in 5 Lumbee Native American families with congenital hypotonia and weakness, cleft palate, short stature, ptosis, kyphoscoliosis, talipes deformities, and susceptibility to malignant hyperthermia (MH). Here we present two non-Native American families, who were found to have STAC3 pathogenic variants. The first proband and her affected older sister are from a consanguineous Qatari family with a suspected clinical diagnosis of Carey-Fineman-Ziter syndrome (CFZS) based on features of hypotonia, myopathic facies with generalized weakness, ptosis, normal extraocular movements, cleft palate, growth delay, and kyphoscoliosis. We identified the homozygous c.851G>C;p.Trp284Ser variant in STAC3 in both sisters. The second proband and his affected sister are from a non-consanguineous, Puerto Rican family who was evaluated for a possible diagnosis of Moebius syndrome (MBS). His features included facial and generalized weakness, minimal limitation of horizontal gaze, cleft palate, and hypotonia, and he has a history of MH. The siblings were identified to be compound heterozygous for STAC3 variants c.851G>C;p.Trp284Ser and c.763_766delCTCT;p.Leu255IlefsX58. Given the phenotypic overlap of individuals with CFZS, MBS, and NAM, we screened STAC3 in 12 individuals diagnosed with CFZS and in 50 individuals diagnosed with MBS or a congenital facial weakness disorder. We did not identify any rare coding variants in STAC3. NAM should be considered in patients presenting with facial and generalized weakness, normal or mildly abnormal extraocular movement, hypotonia, cleft palate, and scoliosis, particularly if there is a history of MH.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Síndrome de Möbius/genética , Doenças Musculares/genética , Mutação , Síndrome de Pierre Robin/genética , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Síndrome de Möbius/complicações , Síndrome de Möbius/patologia , Doenças Musculares/complicações , Doenças Musculares/patologia , Linhagem , Síndrome de Pierre Robin/complicações , Síndrome de Pierre Robin/patologia , Prognóstico , Adulto Jovem
13.
Dev Cell ; 42(5): 445-461.e5, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28844842

RESUMO

Dural cerebral veins (CV) are required for cerebrospinal fluid reabsorption and brain homeostasis, but mechanisms that regulate their growth and remodeling are unknown. We report molecular and cellular processes that regulate dural CV development in mammals and describe venous malformations in humans with craniosynostosis and TWIST1 mutations that are recapitulated in mouse models. Surprisingly, Twist1 is dispensable in endothelial cells but required for specification of osteoprogenitor cells that differentiate into preosteoblasts that produce bone morphogenetic proteins (BMPs). Inactivation of Bmp2 and Bmp4 in preosteoblasts and periosteal dura causes skull and CV malformations, similar to humans harboring TWIST1 mutations. Notably, arterial development appears normal, suggesting that morphogens from the skull and dura establish optimal venous networks independent from arterial influences. Collectively, our work establishes a paradigm whereby CV malformations result from primary or secondary loss of paracrine BMP signaling from preosteoblasts and dura, highlighting unique cellular interactions that influence tissue-specific angiogenesis in mammals.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Veias Cerebrais/anormalidades , Veias Cerebrais/metabolismo , Proteínas Nucleares/metabolismo , Transdução de Sinais , Crânio/patologia , Células-Tronco/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Animais , Diferenciação Celular , Artérias Cerebrais/crescimento & desenvolvimento , Artérias Cerebrais/patologia , Veias Cerebrais/patologia , Suturas Cranianas/patologia , Craniossinostoses/genética , Craniossinostoses/patologia , Dura-Máter/patologia , Feminino , Humanos , Mesoderma/metabolismo , Camundongos , Camundongos Mutantes , Mutação/genética , Crista Neural/patologia , Osteoblastos , Comunicação Parácrina , Seios Transversos/patologia
14.
Nat Commun ; 8: 16077, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28681861

RESUMO

Multinucleate cellular syncytial formation is a hallmark of skeletal muscle differentiation. Myomaker, encoded by Mymk (Tmem8c), is a well-conserved plasma membrane protein required for myoblast fusion to form multinucleated myotubes in mouse, chick, and zebrafish. Here, we report that autosomal recessive mutations in MYMK (OMIM 615345) cause Carey-Fineman-Ziter syndrome in humans (CFZS; OMIM 254940) by reducing but not eliminating MYMK function. We characterize MYMK-CFZS as a congenital myopathy with marked facial weakness and additional clinical and pathologic features that distinguish it from other congenital neuromuscular syndromes. We show that a heterologous cell fusion assay in vitro and allelic complementation experiments in mymk knockdown and mymkinsT/insT zebrafish in vivo can differentiate between MYMK wild type, hypomorphic and null alleles. Collectively, these data establish that MYMK activity is necessary for normal muscle development and maintenance in humans, and expand the spectrum of congenital myopathies to include cell-cell fusion deficits.


Assuntos
Proteínas de Membrana/genética , Síndrome de Möbius/genética , Morfogênese/genética , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Doenças Musculares/genética , Mutação , Mioblastos/metabolismo , Síndrome de Pierre Robin/genética , Proteínas de Peixe-Zebra/genética , Adulto , Sequência de Aminoácidos , Animais , Fusão Celular , Criança , Modelos Animais de Doenças , Embrião não Mamífero , Feminino , Expressão Gênica , Genes Recessivos , Teste de Complementação Genética , Humanos , Lactente , Masculino , Proteínas de Membrana/deficiência , Síndrome de Möbius/metabolismo , Síndrome de Möbius/patologia , Proteínas Musculares/deficiência , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/patologia , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Mioblastos/patologia , Linhagem , Síndrome de Pierre Robin/metabolismo , Síndrome de Pierre Robin/patologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Peixe-Zebra , Proteínas de Peixe-Zebra/deficiência
15.
Nat Genet ; 49(4): 606-612, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28250456

RESUMO

Motor, sensory, and integrative activities of the brain are coordinated by a series of midline-bridging neuronal commissures whose development is tightly regulated. Here we report a new human syndrome in which these commissures are widely disrupted, thus causing clinical manifestations of horizontal gaze palsy, scoliosis, and intellectual disability. Affected individuals were found to possess biallelic loss-of-function mutations in the gene encoding the axon-guidance receptor 'deleted in colorectal carcinoma' (DCC), which has been implicated in congenital mirror movements when it is mutated in the heterozygous state but whose biallelic loss-of-function human phenotype has not been reported. Structural MRI and diffusion tractography demonstrated broad disorganization of white-matter tracts throughout the human central nervous system (CNS), including loss of all commissural tracts at multiple levels of the neuraxis. Combined with data from animal models, these findings show that DCC is a master regulator of midline crossing and development of white-matter projections throughout the human CNS.


Assuntos
Encéfalo/anormalidades , Neoplasias Colorretais/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Perda de Heterozigosidade/genética , Mutação/genética , Sistema Nervoso Central/anormalidades , Feminino , Humanos , Deficiência Intelectual/genética , Masculino , Neurônios/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Receptores de Superfície Celular/genética
16.
Am J Med Genet A ; 170A(2): 297-305, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26639658

RESUMO

One set of missense mutations in the neuron specific beta tubulin isotype 3 (TUBB3) has been reported to cause malformations of cortical development (MCD), while a second set has been reported to cause isolated or syndromic Congenital Fibrosis of the Extraocular Muscles type 3 (CFEOM3). Because TUBB3 mutations reported to cause CFEOM had not been associated with cortical malformations, while mutations reported to cause MCD had not been associated with CFEOM or other forms of paralytic strabismus, it was hypothesized that each set of mutations might alter microtubule function differently. Here, however, we report two novel de novo heterozygous TUBB3 amino acid substitutions, G71R and G98S, in four patients with both MCD and syndromic CFEOM3. These patients present with moderately severe CFEOM3, nystagmus, torticollis, and developmental delay, and have intellectual and social disabilities. Neuroimaging reveals defective cortical gyration, as well as hypoplasia or agenesis of the corpus callosum and anterior commissure, malformations of hippocampi, thalami, basal ganglia and cerebella, and brainstem and cranial nerve hypoplasia. These new TUBB3 substitutions meld the two previously distinct TUBB3-associated phenotypes, and implicate similar microtubule dysfunction underlying both.


Assuntos
Oftalmopatias Hereditárias/genética , Oftalmopatias Hereditárias/patologia , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/patologia , Mutação/genética , Tubulina (Proteína)/genética , Adulto , Sequência de Aminoácidos , Substituição de Aminoácidos , Criança , Pré-Escolar , Feminino , Fibrose , Humanos , Masculino , Dados de Sequência Molecular , Oftalmoplegia , Linhagem , Fenótipo , Homologia de Sequência de Aminoácidos , Adulto Jovem
17.
J Clin Endocrinol Metab ; 100(3): E473-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25559402

RESUMO

CONTEXT: A heterozygous de novo c.1228G>A mutation (E410K) in the TUBB3 gene encoding the neuronal-specific ß-tubulin isotype 3 (TUBB3) causes the TUBB3 E410K syndrome characterized by congenital fibrosis of the extraocular muscles (CFEOM), facial weakness, intellectual and social disabilities, and Kallmann syndrome (anosmia with hypogonadotropic hypogonadism). All TUBB3 E410K subjects reported to date are sporadic cases. OBJECTIVE: This study aimed to report the clinical, genetic, and molecular features of a familial presentation of the TUBB3 E410K syndrome. DESIGN: Case report of a mother and three affected children with clinical features of the TUBB3 E410K syndrome. SETTING: Academic Medical Center. MAIN OUTCOME MEASURES: Genetic analysis of the TUBB3 gene and clinical evaluation of endocrine and nonendocrine phenotypes. RESULTS: A de novo TUBB3 c.1228G>A mutation arose in a female proband who displayed CFEOM, facial weakness, intellectual and social disabilities, and anosmia. However, she underwent normal sexual development at puberty and had three spontaneous pregnancies with subsequent autosomal-dominant inheritance of the mutation by her three boys. All sons displayed nonendocrine features of the TUBB3 E410K syndrome similar to their mother but, in addition, had variable features suggestive of additional endocrine abnormalities. CONCLUSIONS: This first report of an autosomal-dominant inheritance of the TUBB3 c.1228G>A mutation in a family provides new insights into the spectrum and variability of endocrine phenotypes associated with the TUBB3 E410K syndrome. These observations emphasize the need for appropriate clinical evaluation and complicate genetic counseling of patients and families with this syndrome.


Assuntos
Doenças do Sistema Endócrino/genética , Tubulina (Proteína)/genética , Adulto , Idoso , Substituição de Aminoácidos , Criança , Pré-Escolar , Deficiências do Desenvolvimento/genética , Oftalmopatias Hereditárias/genética , Feminino , Fibrose , Ácido Glutâmico/genética , Humanos , Síndrome de Kallmann/genética , Lisina/genética , Masculino , Oftalmoplegia , Linhagem , Fenótipo , Síndrome
18.
Am J Med Genet A ; 167A(2): 417-20, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25428120

RESUMO

Menkes disease (MD; OMIM 309400) is an X-linked, neurodegenerative disorder resulting from deficient activity of copper-dependent enzymes and caused by alterations in the APT7A gene. In its classic form, it manifests in boys with hypotonia, seizures, skin and joint laxity, hair twisting (pili torti), cerebrovascular tortuosity, and bladder diverticulae. Menkes disease phenotypes have been reported in females with X; autosome translocations-disrupting ATP7A gene function- or ATP7A gene alterations. Those females manifest variable clinical findings, some of which, such as pili torti, seizure presence and/or age of onset, cerebrovascular tortuosity, degree of intellectual disability, and bladder divericulae are largely under-reported and under-studied. Here, we report on three females with Menkes disease and variant phenotypes, sharing characteristic features, one with classic Menkes disease and two with Menkes disease variants. We conclude that Menkes disease in females manifests with a variable spectrum of clinical findings but a few are uniformly present such as neurodevelopmental disability, hypotonia, and connective tissue findings. Others, such as seizures, cerebral atrophy, and cerebrovascular tortuosity may be present but are under-reported and under- studied. We propose that the diagnosis of Menkes disease or variants in females with suspicious clinical findings is an important one to consider as early treatment with parenteral copper may be considered. The effect of this treatment on the disease course in females with MD is unknown and remains to be seen.


Assuntos
Síndrome dos Cabelos Torcidos/diagnóstico , Síndrome dos Cabelos Torcidos/genética , Fenótipo , Adenosina Trifosfatases/genética , Proteínas de Transporte de Cátions/genética , Angiografia Cerebral , Criança , Pré-Escolar , ATPases Transportadoras de Cobre , Éxons , Feminino , Heterozigoto , Humanos , Lactente , Angiografia por Ressonância Magnética , Mutação
19.
JAMA Ophthalmol ; 131(12): 1532-40, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24091937

RESUMO

IMPORTANCE: Total ophthalmoplegia can result from ryanodine receptor 1 (RYR1) mutations without overt associated skeletal myopathy. Patients carrying RYR1 mutations are at high risk of developing malignant hyperthermia. Ophthalmologists should be familiar with these important clinical associations. OBJECTIVE: To determine the genetic cause of congenital ptosis, ophthalmoplegia, facial paralysis, and mild hypotonia segregating in 2 pedigrees diagnosed with atypical Moebius syndrome or congenital fibrosis of the extraocular muscles. DESIGN, SETTING, AND PARTICIPANTS: Clinical data including medical and family histories were collected at research laboratories at Boston Children's Hospital and Jules Stein Eye Institute (Engle and Demer labs) for affected and unaffected family members from 2 pedigrees in which patients presented with total ophthalmoplegia, facial weakness, and myopathy. INTERVENTION: Homozygosity mapping and whole-exome sequencing were conducted to identify causative mutations in affected family members. Histories, physical examinations, and clinical data were reviewed. MAIN OUTCOME AND MEASURE: Mutations in RYR1. RESULTS: Missense mutations resulting in 2 homozygous RYR1 amino acid substitutions (E989G and R3772W) and 2 compound heterozygous RYR1 substitutions (H283R and R3772W) were identified in a consanguineous and a nonconsanguineous pedigree, respectively. Orbital magnetic resonance imaging revealed marked hypoplasia of extraocular muscles and intraorbital cranial nerves. Skeletal muscle biopsy specimens revealed nonspecific myopathic changes. Clinically, the patients' ophthalmoplegia and facial weakness were far more significant than their hypotonia and limb weakness and were accompanied by an unrecognized susceptibility to malignant hyperthermia. CONCLUSIONS AND RELEVANCE: Affected children presenting with severe congenital ophthalmoplegia and facial weakness in the setting of only mild skeletal myopathy harbored recessive mutations in RYR1, encoding the ryanodine receptor 1, and were susceptible to malignant hyperthermia. While ophthalmoplegia occurs rarely in RYR1-related myopathies, these children were atypical because they lacked significant weakness, respiratory insufficiency, or scoliosis. RYR1-associated myopathies should be included in the differential diagnosis of congenital ophthalmoplegia and facial weakness, even without clinical skeletal myopathy. These patients should also be considered susceptible to malignant hyperthermia, a life-threatening anesthetic complication avoidable if anticipated presurgically.


Assuntos
Hipertermia Maligna/genética , Síndrome de Möbius/genética , Mutação de Sentido Incorreto , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Substituição de Aminoácidos , Blefaroptose/diagnóstico , Blefaroptose/genética , Criança , Consanguinidade , Análise Mutacional de DNA , Doenças em Gêmeos/genética , Exoma/genética , Oftalmopatias Hereditárias/diagnóstico , Oftalmopatias Hereditárias/genética , Feminino , Fibrose , Genótipo , Homozigoto , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Hipertermia Maligna/diagnóstico , Síndrome de Möbius/diagnóstico , Oftalmoplegia , Linhagem , Gêmeos Dizigóticos/genética
20.
Brain ; 136(Pt 2): 522-35, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23378218

RESUMO

Missense mutations in TUBB3, the gene that encodes the neuronal-specific protein ß-tubulin isotype 3, can cause isolated or syndromic congenital fibrosis of the extraocular muscles, a form of complex congenital strabismus characterized by cranial nerve misguidance. One of the eight TUBB3 mutations reported to cause congenital fibrosis of the extraocular muscles, c.1228G>A results in a TUBB3 E410K amino acid substitution that directly alters a kinesin motor protein binding site. We report the detailed phenotypes of eight unrelated individuals who harbour this de novo mutation, and thus define the 'TUBB3 E410K syndrome'. Individuals harbouring this mutation were previously reported to have congenital fibrosis of the extraocular muscles, facial weakness, developmental delay and possible peripheral neuropathy. We now confirm by electrophysiology that a progressive sensorimotor polyneuropathy does indeed segregate with the mutation, and expand the TUBB3 E410K phenotype to include Kallmann syndrome (hypogonadotropic hypogonadism and anosmia), stereotyped midface hypoplasia, intellectual disabilities and, in some cases, vocal cord paralysis, tracheomalacia and cyclic vomiting. Neuroimaging reveals a thin corpus callosum and anterior commissure, and hypoplastic to absent olfactory sulci, olfactory bulbs and oculomotor and facial nerves, which support underlying abnormalities in axon guidance and maintenance. Thus, the E410K substitution defines a new genetic aetiology for Moebius syndrome, Kallmann syndrome and cyclic vomiting. Moreover, the c.1228G>A mutation was absent in DNA from ∼600 individuals who had either Kallmann syndrome or isolated or syndromic ocular and/or facial dysmotility disorders, but who did not have the combined features of the TUBB3 E410K syndrome, highlighting the specificity of this phenotype-genotype correlation. The definition of the TUBB3 E410K syndrome will allow clinicians to identify affected individuals and predict the mutation based on clinical features alone.


Assuntos
Substituição de Aminoácidos/genética , Síndrome de Kallmann/genética , Síndrome de Möbius/genética , Neurônios/fisiologia , Tubulina (Proteína)/genética , Vômito/genética , Adolescente , Adulto , Criança , Feminino , Humanos , Síndrome de Kallmann/diagnóstico , Masculino , Síndrome de Möbius/diagnóstico , Mutação de Sentido Incorreto/genética , Linhagem , Vômito/diagnóstico , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA