Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 130(7): 3865-3884, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32324593

RESUMO

Myeloid cells comprise a major component of the tumor microenvironment (TME) that promotes tumor growth and immune evasion. By employing a small-molecule inhibitor of glutamine metabolism, not only were we able to inhibit tumor growth, but we markedly inhibited the generation and recruitment of myeloid-derived suppressor cells (MDSCs). Targeting tumor glutamine metabolism led to a decrease in CSF3 and hence recruitment of MDSCs as well as immunogenic cell death, leading to an increase in inflammatory tumor-associated macrophages (TAMs). Alternatively, inhibiting glutamine metabolism of the MDSCs themselves led to activation-induced cell death and conversion of MDSCs to inflammatory macrophages. Surprisingly, blocking glutamine metabolism also inhibited IDO expression of both the tumor and myeloid-derived cells, leading to a marked decrease in kynurenine levels. This in turn inhibited the development of metastasis and further enhanced antitumor immunity. Indeed, targeting glutamine metabolism rendered checkpoint blockade-resistant tumors susceptible to immunotherapy. Overall, our studies define an intimate interplay between the unique metabolism of tumors and the metabolism of suppressive immune cells.


Assuntos
Imunidade Celular , Macrófagos/imunologia , Células Supressoras Mieloides/imunologia , Neoplasias Experimentais/imunologia , Microambiente Tumoral/imunologia , Animais , Feminino , Glutamina/imunologia , Imunoterapia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Células Supressoras Mieloides/patologia , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia
2.
Clin Cancer Res ; 26(4): 846-854, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31676670

RESUMO

PURPOSE: This randomized, multicenter, open-label, phase Ib/II study assessed durvalumab and tremelimumab in combination or as monotherapy for chemotherapy-refractory gastric cancer or gastroesophageal junction (GEJ) cancer. PATIENTS AND METHODS: Second-line patients were randomized 2:2:1 to receive durvalumab plus tremelimumab (arm A), or durvalumab (arm B) or tremelimumab monotherapy (arm C), and third-line patients received durvalumab plus tremelimumab (arm D). A tumor-based IFNγ gene signature was prospectively evaluated as a potential predictive biomarker in second- and third-line patients receiving the combination (arm E). The coprimary endpoints were objective response rate and progression-free survival (PFS) rate at 6 months. RESULTS: A total of 113 patients were treated: 6 in phase Ib and 107 (arm A, 27; arm B, 24; arm C, 12; arm D, 25; arm E, 19) in phase II. Overall response rates were 7.4%, 0%, 8.3%, 4.0%, and 15.8% in the five arms, respectively. PFS rates at 6 months were 6.1%, 0%, 20%, 15%, and 0%, and 12-month overall survival rates were 37.0%, 4.6%, 22.9%, 38.8%, and NA, respectively. Treatment-related grade 3/4 adverse events were reported in 17%, 4%, 42%, 16%, and 11% of patients, respectively. CONCLUSIONS: Response rates were low regardless of monotherapy or combination strategies. No new safety signals were identified. Including use of a tumor-based IFNγ signature and change in baseline and on-treatment circulating tumor DNA are clinically feasible and may be novel strategies to improve treatment response in this difficult-to-treat population.


Assuntos
Adenocarcinoma/tratamento farmacológico , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Junção Esofagogástrica/efeitos dos fármacos , Neoplasias Gástricas/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Antígeno B7-H1/antagonistas & inibidores , Antígeno CTLA-4/antagonistas & inibidores , DNA Tumoral Circulante/genética , Junção Esofagogástrica/patologia , Feminino , Humanos , Interferon gama/metabolismo , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Transcriptoma , Adulto Jovem
3.
Science ; 366(6468): 1013-1021, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31699883

RESUMO

The metabolic characteristics of tumors present considerable hurdles to immune cell function and cancer immunotherapy. Using a glutamine antagonist, we metabolically dismantled the immunosuppressive microenvironment of tumors. We demonstrate that glutamine blockade in tumor-bearing mice suppresses oxidative and glycolytic metabolism of cancer cells, leading to decreased hypoxia, acidosis, and nutrient depletion. By contrast, effector T cells responded to glutamine antagonism by markedly up-regulating oxidative metabolism and adopting a long-lived, highly activated phenotype. These divergent changes in cellular metabolism and programming form the basis for potent antitumor responses. Glutamine antagonism therefore exposes a previously undefined difference in metabolic plasticity between cancer cells and effector T cells that can be exploited as a "metabolic checkpoint" for tumor immunotherapy.


Assuntos
Compostos Azo/farmacologia , Caproatos/farmacologia , Glutamina/metabolismo , Imunoterapia Adotiva , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/terapia , Evasão Tumoral , Animais , Linfócitos T CD8-Positivos/imunologia , Ciclo do Ácido Cítrico/efeitos dos fármacos , Metabolismo Energético , Feminino , Glucose/metabolismo , Glutamina/antagonistas & inibidores , Memória Imunológica , Ativação Linfocitária , Linfócitos do Interstício Tumoral/imunologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Microambiente Tumoral
4.
Cancer Cell ; 30(1): 13-15, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27411584

RESUMO

In this issue, Pietrocola et al. and Di Biase et al. independently demonstrate that caloric restriction from fasting and pharmacologic inhibition results in an enhanced immunogenic response leading to reduced tumor growth. These two studies provide an exciting connection between the emerging fields of cancer and immune metabolism.


Assuntos
Apetite , Fome , Jejum , Humanos , Sistema Imunitário , Neoplasias
5.
PLoS One ; 6(5): e20132, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21629785

RESUMO

BACKGROUND: The receptor for advanced glycation end-products (RAGE) has been suggested to modulate lung injury in models of acute pulmonary inflammation. To study this further, model systems utilizing wild type and RAGE knockout (KO) mice were used to determine the role of RAGE signaling in lipopolysaccharide (LPS) and E. coli induced acute pulmonary inflammation. The effect of intraperitoneal (i.p.) and intratracheal (i.t.) administration of mouse soluble RAGE on E. coli injury was also investigated. METHODOLOGY/PRINCIPAL FINDINGS: C57BL/6 wild type and RAGE KO mice received an i.t. instillation of LPS, E. coli, or vehicle control. Some groups also received i.p. or i.t. administration of mouse soluble RAGE. After 24 hours, the role of RAGE expression on inflammation was assessed by comparing responses in wild type and RAGE KO. RAGE protein levels decreased in wild type lung homogenates after treatment with either LPS or bacteria. In addition, soluble RAGE and HMGB1 increased in the BALF after E. coli instillation. RAGE KO mice challenged with LPS had the same degree of inflammation as wild type mice. However, when challenged with E. coli, RAGE KO mice had significantly less inflammation when compared to wild type mice. Most cytokine levels were lower in the BALF of RAGE KO mice compared to wild type mice after E. coli injury, while only monocyte chemotactic protein-1, MCP-1, was lower after LPS challenge. Neither i.p. nor i.t. administration of mouse soluble RAGE attenuated the severity of E. coli injury in wild type mice. CONCLUSIONS/SIGNIFICANCE: Lack of RAGE in the lung does not protect against LPS induced acute pulmonary inflammation, but attenuates injury following live E. coli challenge. These findings suggest that RAGE mediates responses to E. coli-associated pathogen-associated molecular pattern molecules other than LPS or other bacterial specific signaling responses. Soluble RAGE treatment had no effect on inflammation.


Assuntos
Escherichia coli/patogenicidade , Pulmão/metabolismo , Pulmão/microbiologia , Pneumonia/metabolismo , Pneumonia/microbiologia , Receptores Imunológicos/metabolismo , Animais , Western Blotting , Líquido da Lavagem Broncoalveolar/química , Células Cultivadas , Quimiocina CCL2/metabolismo , Quimiocina CCL3/metabolismo , Técnicas In Vitro , Interleucina-12/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peroxidase/genética , Peroxidase/metabolismo , Pneumonia/genética , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/genética , Fator de Necrose Tumoral alfa/metabolismo
6.
J Biol Chem ; 284(6): 3537-45, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19073610

RESUMO

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by severe, progressive fibrosis. Roles for inflammation and oxidative stress have recently been demonstrated, but despite advances in understanding the pathogenesis, there are still no effective therapies for IPF. This study investigates how extracellular superoxide dismutase (EC-SOD), a syndecan-binding antioxidant enzyme, inhibits inflammation and lung fibrosis. We hypothesize that EC-SOD protects the lung from oxidant damage by preventing syndecan fragmentation/shedding. Wild-type or EC-SOD-null mice were exposed to an intratracheal instillation of asbestos or bleomycin. Western blot was used to detect syndecans in the bronchoalveolar lavage fluid and lung. Human lung samples (normal and IPF) were also analyzed. Immunohistochemistry for syndecan-1 and EC-SOD was performed on human and mouse lungs. In vitro, alveolar epithelial cells were exposed to oxidative stress and EC-SOD. Cell supernatants were analyzed for shed syndecan-1 by Western blot. Syndecan-1 ectodomain was assessed in wound healing and neutrophil chemotaxis. Increases in human syndecan-1 are detected in lung homogenates and lavage fluid of IPF lungs. Syndecan-1 is also significantly elevated in the lavage fluid of EC-SOD-null mice after asbestos and bleomycin exposure. On IHC, syndecan-1 staining increases within fibrotic areas of human and mouse lungs. In vitro, EC-SOD inhibits oxidant-induced loss of syndecan-1 from A549 cells. Shed and exogenous syndecan-1 ectodomain induce neutrophil chemotaxis, inhibit alveolar epithelial wound healing, and promote fibrogenesis. Oxidative shedding of syndecan-1 is an underlying cause of neutrophil chemotaxis and aberrant wound healing that may contribute to pulmonary fibrosis.


Assuntos
Estresse Oxidativo , Alvéolos Pulmonares/metabolismo , Fibrose Pulmonar/metabolismo , Sindecana-1/metabolismo , Animais , Antibióticos Antineoplásicos/efeitos adversos , Antibióticos Antineoplásicos/farmacologia , Amianto/toxicidade , Bleomicina/efeitos adversos , Bleomicina/farmacologia , Lavagem Broncoalveolar , Carcinógenos/toxicidade , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Camundongos , Camundongos Knockout , Neutrófilos/metabolismo , Neutrófilos/patologia , Alvéolos Pulmonares/patologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Sindecana-1/genética , Cicatrização/efeitos dos fármacos , Cicatrização/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA