Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(23): 5132-5146.e5, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37992718

RESUMO

The mechanisms underlying the construction of an air-liquid interface in respiratory organs remain elusive. Here, we use live imaging and genetic analysis to describe the morphogenetic events generating an extracellular lipid lining of the Drosophila airways required for their gas filing and animal survival. We show that sequential Rab39/Syx1A/Syt1-mediated secretion of lysosomal acid sphingomyelinase (Drosophila ASM [dASM]) and Rab11/35/Syx1A/Rop-dependent exosomal secretion provides distinct components for lipid film assembly. Tracheal inactivation of Rab11 or Rab35 or loss of Rop results in intracellular accumulation of exosomal, multi-vesicular body (MVB)-derived vesicles. On the other hand, loss of dASM or Rab39 causes luminal bubble-like accumulations of exosomal membranes and liquid retention in the airways. Inactivation of the exosomal secretion in dASM mutants counteracts this phenotype, arguing that the exosomal secretion provides the lipid vesicles and that secreted lysosomal dASM organizes them into a continuous film. Our results reveal the coordinated functions of extracellular vesicle and lysosomal secretions in generating a lipid layer crucial for airway gas filling and survival.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Tensoativos , Endossomos , Traqueia , Lipídeos , Proteínas do Tecido Nervoso , Proteínas de Drosophila/genética
2.
Front Biosci (Landmark Ed) ; 28(6): 124, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37395037

RESUMO

BACKGROUND: Bruton's tyrosine kinase (BTK) is a non-receptor type tyrosine kinase originally identified as the genetic signature responsible for X-linked agammaglobulinemia (XLA) when mutated. Its functional form is required for B lymphocyte maturation in both humans and mice, whereas loss-of-function causes a different form of developmental defect in the fruit fly, Drosophila melanogaster. METHODS: Ibrutinib and other therapeutic inhibitors of BTK have been extensively used to successfully treat various leukemias and lymphomas. Btk29A type 2 is the ortholog of BTK in the fruit fly. We show that feeding wild-type flies an ibrutinib-containing diet induces phenocopying of Btk29A mutants, i.e., failure in the fusion of left and right halves of the dorsal cuticles, partial loss of wing tissues and dysregulation of germ cell production. RESULTS: We have previously reported that Btk29A phosphorylates Drosophila Arm (ß-catenin), and ibrutinib reduces phosphorylation at Tyrosine142 of endogenously expressed ß-catenin in Cos7 cells transfected with Btk29A type 2 cDNA. CONCLUSIONS: Thus, Drosophila is suitable for screens of novel BTK inhibitor candidates and offers a unique in vivo system in which the mode of action of BTK inhibitors can be examined at the molecular, cellular, and organismal levels.


Assuntos
Drosophila melanogaster , Proteínas Tirosina Quinases , Humanos , Animais , Camundongos , Drosophila melanogaster/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , beta Catenina/metabolismo , Drosophila/metabolismo , Tirosina Quinase da Agamaglobulinemia/genética , Tirosina Quinase da Agamaglobulinemia/metabolismo
3.
Sci Rep ; 9(1): 7529, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101845

RESUMO

The absence of high-affinity potassium uptake in Candida glabrata, the consequence of the deletion of the TRK1 gene encoding the sole potassium-specific transporter, has a pleiotropic effect. Here, we show that in addition to changes in basic physiological parameters (e.g., membrane potential and intracellular pH) and decreased tolerance to various cell stresses, the loss of high affinity potassium uptake also alters cell-surface properties, such as an increased hydrophobicity and adherence capacity. The loss of an efficient potassium uptake system results in diminished virulence as assessed by two insect host models, Drosophila melanogaster and Galleria mellonella, and experiments with macrophages. Macrophages kill trk1Δ cells more effectively than wild type cells. Consistently, macrophages accrue less damage when co-cultured with trk1Δ mutant cells compared to wild-type cells. We further show that low levels of potassium in the environment increase the adherence of C. glabrata cells to polystyrene and the propensity of C. glabrata cells to form biofilms.


Assuntos
Candida glabrata/genética , Candida glabrata/patogenicidade , Proteínas de Transporte de Cátions/genética , Adesão Celular/fisiologia , Potássio/metabolismo , Animais , Biofilmes/crescimento & desenvolvimento , Candida glabrata/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Drosophila melanogaster/microbiologia , Regulação Fúngica da Expressão Gênica/genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Transporte de Íons , Macrófagos/imunologia , Potenciais da Membrana/fisiologia , Mariposas/microbiologia , Antiportadores de Potássio-Hidrogênio/genética , Propriedades de Superfície , Células THP-1 , Virulência/genética
4.
PLoS Pathog ; 14(7): e1007076, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30059535

RESUMO

Phosphate is an essential macronutrient required for cell growth and division. Pho84 is the major high-affinity cell-surface phosphate importer of Saccharomyces cerevisiae and a crucial element in the phosphate homeostatic system of this model yeast. We found that loss of Candida albicans Pho84 attenuated virulence in Drosophila and murine oropharyngeal and disseminated models of invasive infection, and conferred hypersensitivity to neutrophil killing. Susceptibility of cells lacking Pho84 to neutrophil attack depended on reactive oxygen species (ROS): pho84-/- cells were no more susceptible than wild type C. albicans to neutrophils from a patient with chronic granulomatous disease, or to those whose oxidative burst was pharmacologically inhibited or neutralized. pho84-/- mutants hyperactivated oxidative stress signalling. They accumulated intracellular ROS in the absence of extrinsic oxidative stress, in high as well as low ambient phosphate conditions. ROS accumulation correlated with diminished levels of the unique superoxide dismutase Sod3 in pho84-/- cells, while SOD3 overexpression from a conditional promoter substantially restored these cells' oxidative stress resistance in vitro. Repression of SOD3 expression sharply increased their oxidative stress hypersensitivity. Neither of these oxidative stress management effects of manipulating SOD3 transcription was observed in PHO84 wild type cells. Sod3 levels were not the only factor driving oxidative stress effects on pho84-/- cells, though, because overexpressing SOD3 did not ameliorate these cells' hypersensitivity to neutrophil killing ex vivo, indicating Pho84 has further roles in oxidative stress resistance and virulence. Measurement of cellular metal concentrations demonstrated that diminished Sod3 expression was not due to decreased import of its metal cofactor manganese, as predicted from the function of S. cerevisiae Pho84 as a low-affinity manganese transporter. Instead of a role of Pho84 in metal transport, we found its role in TORC1 activation to impact oxidative stress management: overexpression of the TORC1-activating GTPase Gtr1 relieved the Sod3 deficit and ROS excess in pho84-/- null mutant cells, though it did not suppress their hypersensitivity to neutrophil killing or hyphal growth defect. Pharmacologic inhibition of Pho84 by small molecules including the FDA-approved drug foscarnet also induced ROS accumulation. Inhibiting Pho84 could hence support host defenses by sensitizing C. albicans to oxidative stress.


Assuntos
Candida albicans/patogenicidade , Candidíase/metabolismo , Estresse Oxidativo/fisiologia , Simportadores de Próton-Fosfato/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Transporte Biológico/fisiologia , Drosophila , Proteínas Fúngicas/metabolismo , Humanos , Camundongos , Fosfatos/metabolismo , Transdução de Sinais/fisiologia , Virulência
5.
Stem Cell Reports ; 10(5): 1565-1578, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29681543

RESUMO

Drosophila POU/Oct transcription factors are required for many developmental processes, but their putative regulation of adult stem cell activity has not been investigated. Here, we show that Nubbin (Nub)/Pdm1, homologous to mammalian OCT1/POU2F1 and related to OCT4/POU5F1, is expressed in gut epithelium progenitor cells. We demonstrate that the nub-encoded protein isoforms, Nub-PB and Nub-PD, play opposite roles in the regulation of intestinal stem cell (ISC) maintenance and differentiation. Depletion of Nub-PB in progenitor cells increased ISC proliferation by derepression of escargot expression. Conversely, loss of Nub-PD reduced ISC proliferation, suggesting that this isoform is necessary for ISC maintenance, analogous to mammalian OCT4/POU5F1 functions. Furthermore, Nub-PB is required in enteroblasts to promote differentiation, and it acts as a tumor suppressor of Notch RNAi-driven hyperplasia. We suggest that a dynamic and well-tuned expression of Nub isoforms in progenitor cells is required for maintaining gut epithelium homeostasis.


Assuntos
Diferenciação Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Proteínas de Homeodomínio/metabolismo , Intestinos/citologia , Fatores do Domínio POU/metabolismo , Células-Tronco/citologia , Envelhecimento/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Feminino , Modelos Biológicos , Mutação/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , Receptores Notch/metabolismo , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA