Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Macromol Biosci ; 23(12): e2300135, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37565461

RESUMO

Branched poly(ethylene imine) (bPEI) is frequently used in RNA interference (RNAi) experiments as a cationic polymer for the delivery of small interfering RNA (siRNA) because of its ability to form stable polyplexes that facilitate siRNA uptake. However, the use of bPEI in gene delivery is limited by its cytotoxicity and a need for target specificity. In this work, bPEI is modified with d-fructose to improve biocompatibility and target breast cancer cells through the overexpressed GLUT5 transporter. Fructose-substituted bPEI (Fru-bPEI) is accessible in three steps starting from commercially available protected fructopyranosides and bPEI. Several polymers with varying molecular weights, degrees of substitution, and linker positions on d-fructose (C1 and C3) are synthesized and characterized with NMR spectroscopy, size exclusion chromatography, and elemental analysis. In vitro biological screenings show significantly reduced cytotoxicity of 10 kDa bPEI after fructose functionalization, specific uptake of siRNA polyplexes, and targeted knockdown of green fluorescent protein (GFP) in triple-negative breast cancer cells (MDA-MB-231) compared to noncancer cells (HEK293T).


Assuntos
Neoplasias da Mama , Polietilenoimina , Humanos , Feminino , RNA Interferente Pequeno/química , Polietilenoimina/química , Frutose , Neoplasias da Mama/genética , Células HEK293 , Polímeros/química
2.
Pharmaceutics ; 12(11)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218172

RESUMO

Bisindolylmaleimide I (BIM-I) is a competitive pan protein kinase C inhibitor with anti-inflammatory and anti-metastatic properties, suggested to treat inflammatory diseases and various cancer entities. However, despite its therapeutic potential, BIM-I has two major drawbacks, i.e., it has a poor water solubility, and it binds the human ether-à-go-go-related gene (hERG) ion channels, potentially causing deadly arrhythmias. In this case, a targeted delivery of BIM-I is imperative to minimize peripheral side effects. To circumvent these drawbacks BIM-I was encapsulated into nanoparticles prepared from poly(lactic-co-glycolic acid) (PLGA) functionalized by the near-infrared dye DY-635. DY-635 served as an active targeting moiety since it selectively binds the OATP1B1 and OATP1B3 transporters that are highly expressed in liver and cancer cells. PLGA-DY-635 (BIM-I) nanoparticles were produced by nanoprecipitation and characterized using dynamic light scattering, analytical ultracentrifugation, and cryogenic transmission electron microscopy. Particle sizes were found to be in the range of 20 to 70 nm, while a difference in sizes between the drug-loaded and unloaded particles was observed by all analytical techniques. In vitro studies demonstrated that PLGA-DY-635 (BIM-I) NPs prevent the PKC activation efficiently, proving the efficacy of the inhibitor after its encapsulation, and suggesting that BIM-I is released from the PLGA-NPs. Ultimately, our results present a feasible formulation strategy that improved the cytotoxicity profile of BIM-I and showed a high cellular uptake in the liver as demonstrated in vivo by intravital microscopy investigations.

3.
Mol Ther Oncolytics ; 18: 372-381, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32913887

RESUMO

In chronic myelogenous leukemia (CML), treatment with tyrosine kinase inhibitors (TKI) is unable to eradicate leukemic stem cells (LSC). Polymethine dye-functionalized nanoparticles can be internalized by specific cell types using transmembrane carrier proteins. In this study we investigated the uptake behavior of various polymethine dyes on leukemia cell lines and searched for carrier proteins that guide dye transport using RNA interference. The results show that the uptake of DY-635 is dependent on organic anion transport protein 1B3 (OATP1B3) in CML cells and immature myeloid precursor cells of CML patients. In contrast to nonspecific poly(lactide-co-glycolic acid) (PLGA) nanoparticle constructs, DY-635-functionalization of nanoparticles led to an uptake in CML cells. Investigation of these nanoparticles on bone marrow of CML patients showed a preferred uptake in LSC. The transcription of OATP1B3 is known to be induced under hypoxic conditions via the hypoxia-inducing factor 1 alpha (HIF1α), thus also in the stem cells niche. Since these cells have the potential to repopulate the bone marrow after CML treatment discontinuation, eliminating them by means of drug-loaded DY-635-functionalized PLGA nanoparticles deployed as a selective delivery system to LSC is highly relevant to the ongoing search for curative treatment options for CML patients.

4.
Nat Chem Biol ; 9(11): 731-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24077179

RESUMO

Notch signaling has a pivotal role in numerous cell-fate decisions, and its aberrant activity leads to developmental disorders and cancer. To identify molecules that influence Notch signaling, we screened nearly 17,000 compounds using automated microscopy to monitor the trafficking and processing of a ligand-independent Notch-enhanced GFP (eGFP) reporter. Characterization of hits in vitro by biochemical and cellular assays and in vivo using zebrafish led to five validated compounds, four of which induced accumulation of the reporter at the plasma membrane by inhibiting γ-secretase. One compound, the dihydropyridine FLI-06, disrupted the Golgi apparatus in a manner distinct from that of brefeldin A and golgicide A. FLI-06 inhibited general secretion at a step before exit from the endoplasmic reticulum (ER), which was accompanied by a tubule-to-sheet morphological transition of the ER, rendering FLI-06 the first small molecule acting at such an early stage in secretory traffic. These data highlight the power of phenotypic screening to enable investigations of central cellular signaling pathways.


Assuntos
Di-Hidropiridinas/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Receptores Notch/antagonistas & inibidores , Via Secretória/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Animais , Di-Hidropiridinas/química , Retículo Endoplasmático/metabolismo , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Estrutura Molecular , Receptores Notch/metabolismo , Relação Estrutura-Atividade , Peixe-Zebra/metabolismo
5.
J Neurochem ; 121(6): 924-31, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22380576

RESUMO

ß-Carbolines (BCs) belong to the heterogenous family of carbolines, which have been found exogenously, that is, in various fruits, meats, tobacco smoke, alcohol and coffee, but also endogenously, that is, blood, brain and CSF. These exogenous and endogenous BCs and some of their metabolites can exert neurotoxic effects, however, an unexpected stimulatory effect of 9-methyl-ß-carboline (9-me-BC) on dopaminergic neurons in primary mesencephalic cultures was recently discovered. The aim of the present study was to extend our knowledge on the stimulatory effects of 9-me-BC and to test the hypothesis that 9-me-BC may act as a cognitive enhancer. We found that 10 days (but not 5 days) of pharmacological treatment with 9-me-BC (i) improves spatial learning in the radial maze, (ii) elevates dopamine levels in the hippocampal formation, and (iii) results after 10 days of treatment in elongated, more complex dendritic trees and higher spine numbers on granule neurons in the dentate gyrus of 9-me-BC-treated rats. Our results demonstrate that beyond its neuroprotective/neurorestorative and anti-inflammatory effects, 9-me-BC acts as a cognitive enhancer in a hippocampus-dependent task, and that the behavioral effects may be associated with a stimulatory impact on hippocampal dopamine levels and dendritic and synaptic proliferation.


Assuntos
Carbolinas/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Cognição/efeitos dos fármacos , Dendritos/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Animais , Cromatografia Líquida de Alta Pressão , Dopamina/metabolismo , Feminino , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Aprendizagem em Labirinto/efeitos dos fármacos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA