Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 652(Pt A): 184-194, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37595436

RESUMO

The development of quantum dot (QD)-based modular bioprobe that has a compact size and enable a facile conjugation of various biofunctional groups is in high demand. To address this, we surface engineered QDs with zwitterion polymer ligands to have an inherent compact size and derivatized them sequentially with the recombinant proteins SpyCatcher/SpyTag (SC/ST) to use their protein ligation system. SC/ST spontaneously form one complex through the isopeptide bond between them. SC-conjugated QDs (QD-SC) were used as base building blocks. Then, ST-biomolecules were added for modular biofunctionalization. We synthesized compact sized (∼15 nm) QD-SC-ST-affibody (antibody-mimicking small protein for tumor detection) conjugates, which showed successful cell-receptor targeting. The target cell-receptor could be easily tuned by changing the type of ST-affibody. We also demonstrated that anti-human-chorionic-gonadotropin mouse IgG1 antibodies can be labeled on the QD surface by mixing QD-SC with the ST-MG1Nb (mouse-IgG1-specific protein). The immunoassay performance of the antibody-labeled QDs was evaluated using a pregnancy test kit, displaying equivalent detection sensitivity to a commercially available kit. This study proposed an innovative strategy for QD biofunctionalization in a modular manner, which can be expanded to a diverse range of colloidal particle derivatization.


Assuntos
Pontos Quânticos , Camundongos , Animais , Polímeros , Proteínas Recombinantes/química , Imunoglobulina G
2.
Int J Biol Macromol ; 231: 123577, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36758763

RESUMO

Aggressive tumor formation often leads to excessive anaerobic glycolysis and massive production and accumulation of lactate in the tumor microenvironment (TME). To significantly curb lactate accumulation in TME, in this study, lactate oxidase (LOX) was used as a potential therapeutic enzyme and signal regulatory protein α variant (vSIRPα) as a tumor cell targeting ligand. SpyCatcher protein and SpyTag peptide were genetically fused to LOX and vSIRPα, respectively, to form SC-LOX and ST-vSIRPα and tumor-targeting LOX/vSIRPα conjugates were constructed via a SpyCatcher/SpyTag protein ligation system. LOX/vSIRPα conjugates selectively bound to the CD47-overexpressing mouse melanoma B16-F10 cells and effectively consumed lactate produced by the B16-F10 cells, generating adequate amounts of hydrogen peroxide (H2O2), which induces drastic necrotic tumor cell death. Local treatments of B16-F10 tumor-bearing mice with LOX/vSIRPα conjugates significantly suppressed B16-F10 tumor growth in vivo without any severe side effects. Tumor-targeting vSIRPα may allow longer retention of LOX in tumor sites, effectively consuming surrounding lactate in TME and locally generating adequate amounts of cytotoxic H2O2 to suppress tumor growth. The approach restraining the local lactate concentration and H2O2 in TME using LOX and vSIRPα could offer new opportunities for developing enzyme/targeting ligand conjugate-based therapeutic tools for tumor treatment.


Assuntos
Peróxido de Hidrogênio , Neoplasias , Animais , Camundongos , Peróxido de Hidrogênio/metabolismo , Ligantes , Necrose , Ácido Láctico , Microambiente Tumoral
3.
Biomacromolecules ; 22(7): 3028-3039, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34142815

RESUMO

Protein cage nanoparticles have a unique spherical hollow structure that provides a modifiable interior space and an exterior surface. For full application, it is desirable to utilize both the interior space and the exterior surface simultaneously with two different functionalities in a well-combined way. Here, we genetically engineered encapsulin protein cage nanoparticles (Encap) as modular nanoplatforms by introducing a split-C-intein (IntC) fragment and SpyTag into the interior and exterior surfaces, respectively. A complementary split-N-intein (IntN) was fused to various protein cargoes, such as NanoLuc luciferase (Nluc), enhanced green fluorescent protein (eGFP), and Nluc-miniSOG, individually, which led to their successful encapsulation into Encaps to form Cargo@Encap through split intein-mediated protein ligation during protein coexpression and cage assembly in bacteria. Conversely, the SpyCatcher protein was fused to various protein ligands, such as a glutathione binder (GST-SC), dimerizing ligands (FKBP12-SC and FRB-SC), and a cancer-targeting affibody (SC-EGFRAfb); subsequently, they were displayed on Cargo@Encaps through SpyTag/SpyCatcher ligation to form Cargo@Encap/Ligands in a mix-and-match manner. Nluc@Encap/glutathione-S-transferase (GST) was effectively immobilized on glutathione (GSH)-coated solid supports exhibiting repetitive and long-term usage of the encapsulated luciferases. We also established luciferase-embedded layer-by-layer (LbL) nanostructures by alternately depositing Nluc@Encap/FKBP12 and Nluc@Encap/FRB in the presence of rapamycin and applied enhanced green fluorescent protein (eGFP)@Encap/EGFRAfb as a target-specific fluorescent imaging probe to visualize specific cancer cells selectively. Modular functionalization of the interior space and the exterior surface of a protein cage nanoparticle may offer the opportunity to develop new protein-based nanostructured devices and nanomedical tools.


Assuntos
Nanopartículas , Neoplasias , Corantes Fluorescentes , Humanos , Inteínas , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA