Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
PLoS One ; 19(4): e0302274, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38662796

RESUMO

In recent years, immune checkpoint inhibitors have proved immense clinical progression in the treatment of certain cancers. The efficacy of immune checkpoint inhibitors is correlated with mismatch repair system deficiency and is exceptionally administered based exclusively on this biological mechanism independent of the cancer type. The promising effect of immune checkpoint inhibitors has left an increasing demand for analytical tools evaluating the mismatch repair status. The analysis of microsatellite instability (MSI), reflecting an indirect but objective manner the inactivation of the mismatch repair system, plays several roles in clinical practice and, therefore, its evaluation is of high relevance. Analysis of MSI by PCR followed by fragment analysis on capillary electrophoresis remains the gold standard method for detection of a deficient mismatch repair system and thereby treatment with immune checkpoint inhibitors. Novel technologies have been applied and concepts such as tumor mutation burden have been introduced. However, to date, most of these technologies require high costs or the need of matched non-tumor tissue as internal comparator. In this study, we present a novel, one-instrument, fast, and objective method for the detection of MSI (MicroSight® MSI 1-step HRM Analysis), which does not depend on the use of matched non-tumor tissue. The assay analyzes five well-described mononucleotide microsatellite sequences by real-time PCR followed by high-resolution melt and evaluates microsatellite length variations via PCR product melting profiles. The assay was evaluated using two different patient cohorts and evaluation included several DNA extraction methodologies, two different PCR platforms, and an inter-laboratory ring study. The MicroSight® MSI assay showed a high repeatability regardless of DNA extraction method and PCR platform, and a 100% agreement of the MSI status with PCR fragment analysis methods applied as clinical comparator.


Assuntos
Instabilidade de Microssatélites , Humanos , Reparo de Erro de Pareamento de DNA/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Feminino , Masculino , Repetições de Microssatélites/genética
2.
Cells ; 13(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38334668

RESUMO

Glioblastoma multiforme (GBM) is usually treated with surgery followed by adjuvant partial radiotherapy combined with temozolomide (TMZ) chemotherapy. Recent studies demonstrated a better survival and good response to TMZ in methylguanine-DNA methyltransferase (MGMT)-methylated GBM cases. However, approximately 20% of patients with MGMT-unmethylated GBM display an unexpectedly favorable outcome. Therefore, additional mechanisms related to the TMZ response need to be investigated. As such, we decided to investigate the clinical relevance of six miRNAs involved in brain tumorigenesis (miR-181c, miR-181d, miR-21, miR-195, miR-196b, miR-648) as additional markers of response and survival in patients receiving TMZ for GBM. We evaluated miRNA expression and the interplay between miRNAs in 112 IDH wt GBMs by applying commercial assays. Then, we correlated the miRNA expression with patients' clinical outcomes. Upon bivariate analyses, we found a significant association between the expression levels of the miRNAs analyzed, but, more interestingly, the OS curves show that the combination of low miR-648 and miR-181c or miR-181d expressions is associated with a worse prognosis than cases with other low-expression miRNA pairs. To conclude, we found how specific miRNA pairs can influence survival in GBM cases treated with TMZ.


Assuntos
Glioblastoma , MicroRNAs , Humanos , Glioblastoma/metabolismo , MicroRNAs/metabolismo , Dacarbazina/uso terapêutico , Relevância Clínica , Temozolomida/farmacologia , Temozolomida/uso terapêutico
3.
Cancers (Basel) ; 16(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38254788

RESUMO

BACKGROUND: In 2019, the breakthrough of the coronavirus 2 disease (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), represented one of the major issues of our recent history. Different drugs have been tested to rapidly find effective anti-viral treatments and, among these, antiandrogens have been suggested to play a role in mediating SARS-CoV-2 infection. Considering the high heterogeneity of studies on this topic, we decided to review the current literature. METHODS: We performed a systematic review according to PRISMA guidelines. A search strategy was conducted on PUBMED and Medline. Only original articles published from March 2020 to 31 August 2023 investigating the possible protective role of antiandrogens were included. In vitro or preclinical studies and reports not in the English language were excluded. The main objective was to investigate how antiandrogens may interfere with COVID-19 outcomes. RESULTS: Among 1755 records, we selected 31 studies, the majority of which consisted of retrospective clinical data collections and of randomized clinical trials during the first and second wave of the COVID-19 pandemic. CONCLUSIONS: In conclusion, we can state that antiandrogens do not seem to protect individuals from SARS-CoV-2 infection and COVID-19 severity and, thus, their use should not be encouraged in this field.

4.
Nat Commun ; 14(1): 5153, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620381

RESUMO

DNA methylation is important for gene expression and alterations in DNA methylation are involved in the development and progression of cancer and other major diseases. Analysis of DNA methylation patterns has until now been dependent on either a chemical or an enzymatic pre-treatment, which are both time consuming procedures and potentially biased due to incomplete treatment. We present a qPCR technology, EpiDirect®, that allows for direct PCR quantification of DNA methylations using untreated DNA. EpiDirect® is based on the ability of Intercalating Nucleic Acids (INA®) to differentiate between methylated and unmethylated cytosines in a special primer design. With this technology, we develop an assay to analyze the methylation status of a region of the MGMT promoter used in treatment selection and prognosis of glioblastoma patients. We compare the assay to two bisulfite-relying, methyl-specific PCR assays in a study involving 42 brain tumor FFPE samples, revealing high sensitivity, specificity, and the clinical utility of the method.


Assuntos
Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase/instrumentação , Reação em Cadeia da Polimerase/métodos , DNA/metabolismo , Metilação de DNA , Temperatura , Oligonucleotídeos/metabolismo , Ilhas de CpG
5.
J Clin Med ; 12(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36902848

RESUMO

Glioblastoma multiforme (GBM) remains one of the tumors with the worst prognosis. In recent years, a better overall survival (OS) has been described in cases subjected to Gross Total Resection (GTR) that were presenting hypermethylation of Methylguanine-DNA methyltransferase (MGMT) promoter. Recently, also the expression of specific miRNAs involved in MGMT silencing has been related to survival. In this study, we evaluate MGMT expression by immunohistochemistry (IHC), MGMT promoter methylation and miRNA expression in 112 GBMs and correlate the data to patients' clinical outcomes. Statistical analyses demonstrate a significant association between positive MGMT IHC and the expression of miR-181c, miR-195, miR-648 and miR-767.3p between unmethylated cases and the low expression of miR-181d and miR-648 and between methylated cases and the low expression of miR-196b. Addressing the concerns of clinical associations, a better OS has been described in presence of negative MGMT IHC, in methylated patients and in the cases with miR-21, miR-196b overexpression or miR-767.3 downregulation. In addition, a better progression-free survival (PFS) is associated with MGMT methylation and GTR but not with MGMT IHC and miRNA expression. In conclusion, our data reinforce the clinical relevance of miRNA expression as an additional marker to predict efficacy of chemoradiation in GBM.

6.
PLoS One ; 18(2): e0281558, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36758042

RESUMO

Mutations in BRAF exon 15 lead to conformational changes in its activation loops, resulting in constitutively active BRAF proteins which are implicated in the development of several human cancer types. Different BRAF inhibitors have been developed and introduced in clinical practice. Identification of BRAF mutations influences the clinical evaluation, treatment, progression and for that reason a sensitive and specific identification of BRAF mutations is on request from the clinic. Here we present the SensiScreen® FFPE BRAF qPCR Assay that uses a novel real-time PCR-based method for BRAF mutation detection based on PentaBases proprietary DNA analogue technology designed to work on standard real-time PCR instruments. The SensiScreen® FFPE BRAF qPCR Assay displays high sensitivity, specificity, fast and easy-to-use. The SensiScreen® FFPE BRAF qPCR Assay was validated on two different FFPE tumour biopsy cohorts, one cohort included malignant melanoma patients previously analyzed by the Cobas® 4800 BRAF V600 Mutation Test, and one cohort from colorectal cancer patients previously analyzed by mutant-enriched PCR and direct sequencing. All BRAF mutant malignant melanoma patients were confirmed with the SensiScreen® FFPE BRAF qPCR Assay and additional four new mutations in the malignant melanoma cohort were identified. All the previously identified BRAF mutations in the colorectal cancer patients were confirmed, and additional three new mutations not identified with direct sequencing were detected. Also, one new BRAF mutation not previously identified with ME-PCR was found. Furthermore, the SensiScreen® FFPE BRAF qPCR Assay identified the specific change in the amino acid. The SensiScreen® FFPE BRAF qPCR Assay will contribute to a more specific, time and cost saving approach to better identify and characterize mutations in patients affected by cancer, and consequently permits a better BRAF characterization that is fundamental for therapy decision.


Assuntos
Neoplasias Colorretais , Melanoma , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Análise Mutacional de DNA/métodos , Melanoma/metabolismo , Mutação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Neoplasias Colorretais/genética , Melanoma Maligno Cutâneo
7.
J Clin Med ; 11(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36556139

RESUMO

Colorectal cancer (CRC) is the third most common cause of cancer-related deaths worldwide, and 20% of patients with CRC present at diagnosis with metastases. The treatment of metastatic CRC is based on a fluoropyrimidine-based chemotherapy plus additional agents such as oxaliplatin and irinotecan. To date, on the basis of the molecular background, targeted therapies (e.g., monoclonal antibodies against epidermal growth factor receptor or inhibiting angiogenesis) are administered to improve the treatment of metastatic CRC. In addition, more recently, immunological agents emerged as effective in patients with a defective mismatch repair system. The administration of targeted therapies and immunotherapy lead to a significant increase in the survival of patients; however these drugs do not always prove effective. In most cases the lack of effectiveness is due to the development of primary resistance, either a resistance-inducing factor is already present before treatment or resistance is acquired when it occurs after treatment initiation. In this review we describe the most relevant targeted therapies and immunotherapies and expand on the reasons for resistance to the different approved or under development targeted drugs. Then we showed the possible mechanisms and drugs that may lead to overcoming the primary or acquired resistance in metastatic CRC.

8.
Cancers (Basel) ; 14(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36077640

RESUMO

In non-small cell lung cancer (NSCLC) the most common alterations are identified in the Kirsten rat sarcoma viral oncogene homolog (KRAS) gene, accounting for approximately 30% of cases in Caucasian patients. The majority of mutations are located in exon 2, with the c.34G > T (p.G12C) change being the most prevalent. The clinical relevance of KRAS mutations in NSCLC was not recognized until a few years ago. What is now emerging is a dual key role played by KRAS mutations in the management of NSCLC patients. First, recent data report that KRAS-mutant lung AC patients generally have poorer overall survival (OS). Second, a KRAS inhibitor specifically targeting the c.34G > T (p.G12C) variant, Sotorasib, has been approved by the U.S. Food and Drug Administration (FDA) and by the European Medicines Agency. Another KRAS inhibitor targeting c.34G > T (p.G12C), Adagrasib, is currently being reviewed by the FDA for accelerated approval. From the description of the biology of KRAS-mutant NSCLC, the present review will focus on the clinical aspects of KRAS mutations in NSCLC, in particular on the emerging efficacy data of Sotorasib and other KRAS inhibitors, including mechanisms of resistance. Finally, the interaction between KRAS mutations and immune checkpoint inhibitors will be discussed.

9.
Front Oncol ; 12: 900945, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837093

RESUMO

Introduction: Circulating tumor DNA (ctDNA) correlates with the response to therapy in different types of cancer. However, in patients with locally advanced rectal cancer (LARC), little is known about how ctDNA levels change with neoadjuvant chemoradiation (Na-ChRT) and how they correlate with treatment response. This work aimed to explore the value of serial liquid biopsies in monitoring response after Na-ChRT with the hypothesis that this could become a reliable biomarker to identify patients with a complete response, candidates for non-operative management. Materials and Methods: Twenty-five consecutive LARC patients undergoing long-term Na-ChRT therapy were included. Applying next-generation sequencing (NGS), we characterized DNA extracted from formalin-fixed paraffin embedded diagnostic biopsy and resection tissue and plasma ctDNA collected at the following time points: the first and last days of radiotherapy (T0, Tend), at 4 (T4), 7 (T7) weeks after radiotherapy, on the day of surgery (Top), and 3-7 days after surgery (Tpost-op). On the day of surgery, a mesenteric vein sample was also collected (TIMV). The relationship between the ctDNA at those time-points and the tumor regression grade (TRG) of the surgical specimen was statistically explored. Results: We found no association between the disappearance of ctDNA mutations in plasma samples and pathological complete response (TRG1) as ctDNA was undetectable in the majority of patients from Tend on. However, we observed that the poor (TRG 4) response to Na-ChRT was significantly associated with a positive liquid biopsy at the Top. Conclusions: ctDNA evaluation by NGS technology may identify LARC patients with poor response to Na-ChRT. In contrast, this technique does not seem useful for identifying patients prone to developing a complete response.

10.
J Clin Med ; 11(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35329953

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs) targeting PD-1 or PD-L1 improved the survival of non-small cell lung cancer (NSCLC) patients with PD-L1 expression ≥50% and without alterations in EGFR, ALK, ROS1, RET. However, markers able to predict the efficacy of ICIs, in combination with PD-L1 expression are still lacking. Our aim in this hypothesis-generating pilot study was to evaluate whether the KRAS G12C variant may predict the efficacy of ICIs in advanced NSCLC patients with PD-L1 ≥ 50%. METHODS: Genomic DNA or tissue sections of 44 advanced ICI-treated NSCLC cases with PD-L1 ≥ 50% without EGFR, ALK, ROS1, RET alterations were tested using Next Generation Sequencing, Fluorescence in Situ Hybridization and immunohistochemistry. Statistical analyses were carried out fitting univariate and multivariate time to event models. RESULTS: KRAS G12C mutant patients (N = 11/44) showed a significantly longer progression-free survival (PFS) at univariate and multivariate analyses (p = 0.03). The Kaplan-Meier plot of the PFS time-to-event supports that G12C positive patients have a longer time to progress. PFS improvement was not observed when any KRAS mutations were compared to wild-type cases. CONCLUSIONS: Given the limitations due to the small sample size and exploratory nature of this study, we tentatively conclude the KRAS G12C mutation should be considered in future trials as a predictive marker of prolonged response to first-line ICIs in NSCLC patients overexpressing PD-L1. This finding could be relevant as anti-KRAS G12C therapies enter the therapeutic landscape of NSCLC.

11.
Oncotarget ; 12(11): 1046-1056, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34084279

RESUMO

BACKGROUND: A disappearance of RAS mutations in the plasma of about 50% of mCRCs (metastatic colorectal cancers) treated with bevacizumab-based chemotherapy has been reported. Our aim was to evaluate the same issue at tissue level. MATERIALS AND METHODS: Using next-generation sequencing and real-time PCR approaches, we characterized the primary tumor (PT) and paired liver metastases in 28 RAS mutant mCRCs. Patients were subdivided into 3 treatment groups: 1) bevacizumab plus chemotherapy; 2) chemotherapy alone; 3) any systemic therapy (control group). In groups 1 and 2, liver metastases were resected after removal of PT and subsequent neoadjuvant systemic therapy. RESULTS: RAS mutant alleles are at the same percentage in PT and liver metastases in the control group, while a significant reduction of the level of RAS mutations was detected in 57.1% of cases in group 1 and in 8.3% of cases in group 2. Differences among groups are statistically significant (p = 0.038). CONCLUSIONS: Most of mCRC patients treated with bevacizumab-containing regimens experience a strong reduction of RAS mutant cells, suggesting bevacizumab as particularly active against RAS mutant cells. This finding might have potential therapeutic implications, as anti-EGFR could be reconsidered in primarily RAS mutant patients reverted to a wild-type status after bevacizumab exposure.

12.
PLoS One ; 16(6): e0253687, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34166445

RESUMO

BACKGROUND: A major perspective for the use of circulating tumor DNA (ctDNA) in the clinical setting of non-small cell lung cancer (NSCLC) is expected as predictive factor for resistance and response to EGFR TKI therapy and, especially, as a non-invasive alternative to tissue biopsy. However, ctDNA is both highly fragmented and mostly low concentrated in plasma and serum. On this basis, it is important to use a platform characterized by high sensitivity and linear performance in the low concentration range. This motivated us to evaluate the newly developed and commercially available SensiScreen® EGFR Liquid assay platform (PentaBase) with regard to sensitivity, linearity, repeatability and accuracy and finally to compare it to our already implemented methods. The validation was made in three independent European laboratories using two cohorts on a total of 68 unique liquid biopsies. RESULTS: Using artificial samples containing 1600 copies of WT DNA spiked with 50% - 0.1% of mutant copies across a seven-log dilution scale, we assessed the sensitivity, linearity, repeatability and accuracy for the p.T790M, p.L858R and exon 19 deletion assays of the SensiScreen® EGFR Liquid assay platform. The lowest value detectable ranged from 0.5% to 0.1% with R2≥0,97 indicating good linearity. High PCR efficiency was shown for all three assays. In 102 single PCRs each containing theoretical one copy of the mutant at initiating, assays showed repeatable positivity in 75.5% - 80.4% of reactions. At low ctDNA levels, as in plasma, the SensiScreen® EGFR Liquid assay platform showed better sensitivity than the Therascreen® EGFR platform (Qiagen) and equal performance to the ctEGFR Mutation Detection Kit (EntroGen) and the IOT® Oncomine cell-free nucleic acids assay (Thermo Fisher Scientific) with 100% concordance at the sequence level. CONCLUSION: For profiling clinical plasma samples, characterized by low ctDNA abundance, the SensiScreen® EGFR Liquid assay is able to identify down to 1 copy of mutant alleles and with its high sensitivity, linearity and accuracy it may be a competitive platform of choice.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , DNA Tumoral Circulante/genética , Neoplasias Pulmonares/genética , Mutação , Proteínas de Neoplasias/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/sangue , Linhagem Celular Tumoral , DNA Tumoral Circulante/sangue , Análise Mutacional de DNA , Receptores ErbB/sangue , Receptores ErbB/genética , Feminino , Humanos , Biópsia Líquida , Neoplasias Pulmonares/sangue , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/sangue
14.
BMC Cancer ; 20(1): 1196, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33287750

RESUMO

An amendment to this paper has been published and can be accessed via the original article.

15.
Int J Mol Sci ; 21(22)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233823

RESUMO

The epidermal growth factor receptor (EGFR), through the MAP kinase and PI3K-Akt-mTOR axis, plays a pivotal role in colorectal cancer (CRC) pathogenesis. The membrane-associated NEU3 sialidase interacts with and desialylates EGFR by promoting its dimerization and downstream effectors' activation. Among the targeted therapies against EGFR, the monoclonal antibody cetuximab is active only in a subgroup of patients not carrying mutations in the MAP kinase pathway. In order to better understand the EGFR-NEU3 interplay and the mechanisms of pharmacological resistance, we investigated the role of NEU3 deregulation in cetuximab-treated CRC cell lines transiently transfected with NEU3 using Western blot analysis. Our results indicate that NEU3 overexpression can enhance EGFR activation only if EGFR is overexpressed, indicating the existence of a threshold for NEU3-mediated EGFR activation. This enhancement mainly leads to the constitutive activation of the MAP kinase pathway. Consequently, we suggest that the evaluation of NEU3 expression cannot entirely substitute the evaluation of EGFR because EGFR-negative cases cannot be stimulated by NEU3. Furthermore, NEU3-mediated hyperactivation of EGFR is counterbalanced by the administration of cetuximab, hypothesizing that a combined treatment of NEU3- and EGFR-targeted therapies may represent a valid option for CRC patients, which must be investigated in the future.


Assuntos
Antineoplásicos/farmacologia , Cetuximab/farmacologia , Neoplasias do Colo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neuraminidase/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Receptores ErbB/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos
16.
BMC Cancer ; 20(1): 1085, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33172431

RESUMO

BACKGROUND: Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is normally detectable in embryonic tissues and absent in adult tissues. ROR1 was shown to inhibit apoptosis, potentiate EGFR signaling and reported to be overexpressed and associated with poor prognosis in several tumor models. This study aimed to assess the expression of ROR1 in lung adenocarcinoma (AC) patients. METHODS: We analyzed ROR1 expression by quantitative real-time PCR (qRT-PCR) in 56 histologically confirmed lung AC, stage I to IV, in addition we evaluated its association with TTF-1 (thyroid transcription factor-1) expression and the main molecular alterations involved in lung cancerogenesis. RESULTS: ROR1 overexpression was observed in 28.6% of the entire cohort, using a cut-off of 1, or in 51.8% of the cases using the median value as threshold. Among patients without any genetic alteration, ROR1 overexpression was observed in 34.8% considering a cut-off of 1 and 52.2% considering the median value. The distribution of ROR1 was homogeneous among the different molecular categories: we found no association of ROR1 expression and the presence of gene mutations/rearrangements or the expression of TTF-1. CONCLUSIONS: ROR1 overexpression could constitute a potential therapeutic target because altered in a consistent number of lung AC, especially in cases without druggable genetic alterations. ROR1 expression is independent of classical lung cancer molecular alterations and not correlated, in a Caucasian cohort, to TTF-1 expression.


Assuntos
Adenocarcinoma de Pulmão/patologia , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Rearranjo Gênico , Neoplasias Pulmonares/patologia , Mutação , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Feminino , Seguimentos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Pessoa de Meia-Idade , Prognóstico , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Taxa de Sobrevida , Adulto Jovem
17.
Front Oncol ; 9: 1569, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32039032

RESUMO

Object: The treatment of choice in glioblastoma (GBM) is the maximal surgical extent of resection (EOR) followed by adjuvant chemo-radiotherapy. Furthermore, methylguanine-DNA methyltransferase (MGMT) promoter methylation is associated with prolonged overall survival (OS) and progression free survival (PFS). The objective of the present study is correlate the biomolecular aspects in relation with EOR. Materials and methods: We analyzed a series of 116 patients with IDH-1 wild type GBM and different EOR (Gross Total Resection-GTR-, Partial Resection-PR- and Biopsy), treated with adjuvant chemo-radiotherapy. The MGMT status was analyzed in terms of promoter methylation and protein expression. Results: When GTR was possible, OS and PFS were significantly better compared to the other two groups (p = 0.001 and p = 0.035, respectively). MGMT methylation was significantly associated with better OS in the biopsy group (p = 0.022) and better OS and PFS in PR (p = 0.02 and p = 0.012, respectively), but not in the GTR group (p = 0.252 for OS, p = 0.256 for PFS) nor the PFS in the biopsy group (p = 0.259). MGMT protein expression levels do not show any association with OS and PFS, regardless of the type of surgery. Conclusions: Our study confirms the positive association of a safe maximal EOR with better OS and PFS, and indicates a positive prognostic value of MGMT methylation status only in case of the presence of residual tumor tissue. MGMT protein expression seems not to play a clinical role in relation with the type of surgery.

18.
Cancer Biomark ; 21(3): 591-601, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29278877

RESUMO

BACKGROUND: Aberrant sialylation is a characteristic feature associated with cancer. The four types of mammalian sialidases identified to date have been shown to behave in different manners during carcinogenesis. While NEU1, NEU2 and NEU4 have been observed to oppose malignant phenotypes, the membrane-bound sialidase NEU3 was revealed to promote cancer progression. OBJECTIVES: With the aim of improving the knowledge about sialidases deregulation in various cancer types, we investigated the amount of NEU1, NEU3 and NEU4 transcripts in paired normal and tumor tissues from 170 patients with 11 cancer types. METHODS: mRNA was extracted from patients' tissue specimens and retrotranscribed into cDNA, which was quantified by Real-Time PCR. RESULTS: We found NEU1 and NEU3 to be up regulated, while NEU4 was down regulated in most cancer types. In particular, colorectal cancer tissues showed the highest increase in NEU3 expression. Both NEU1 and NEU3 showed a strong up-regulation in ovarian cancer. CONCLUSIONS: Our data show that human sialidases are expressed at different levels in healthy tissues and are strongly deregulated in tumors. Moreover, sialidases expression in our European cohort showed significant differences from Asian populations. Some of these peculiar features open potential applications of sialidases in cancer diagnosis and therapy.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/enzimologia , Neoplasias/genética , Neuraminidase/genética , Neuraminidase/metabolismo , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Família Multigênica , Neoplasias/patologia , Isoformas de Proteínas
20.
PLoS One ; 12(10): e0187289, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29088281

RESUMO

Adenocarcinoma of Non-Small Cell Lung Cancer (NSCLC) is a severe disease. Patients carrying EGFR mutations may benefit from EGFR targeted therapies (e.g.: gefitinib). Recently, it has been shown that sialidase NEU3 directly interacts and regulates EGFR. In this work, we investigate the effect of sialidase NEU3 overexpression on EGFR pathways activation and EGFR targeted therapies sensitivity, in a series of lung cancer cell lines. NEU3 overexpression, forced after transfection, does not affect NSCLC cell viability. We demonstrate that NEU3 overexpression stimulates the ERK pathway but this activation is completely abolished by gefitinib treatment. The Akt pathway is also hyper-activated upon NEU3 overexpression, but gefitinib is able only to decrease, and not to abolish, such activation. These findings indicate that NEU3 can act directly on the ERK pathway through EGFR and both directly and indirectly with respect to EGFR on the Akt pathway. Furthermore, we provide evidence that a healthy mucosa cell line (with EGFR wild-type gene sequence) is slightly sensitive to gefitinib, especially in the presence of NEU3 overexpression, thus hypothesizing that NEU3 overexpressing patients may benefit from EGFR targeted therapies also in absence of EGFR point mutations. Overall, the expression of NEU3 may be a novel diagnostic marker in NSCLC because, by its ability to stimulate EGFR downstream pathways with direct and indirect mechanisms, it may help in the identification of patients who can profit from EGFR targeted therapies in absence of EGFR activating mutations or from new combinations of EGFR and Akt inhibitors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/fisiologia , Neuraminidase/fisiologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Antineoplásicos/uso terapêutico , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/fisiopatologia , Linhagem Celular Tumoral , Membrana Celular/enzimologia , Eletroforese em Gel de Poliacrilamida , Gefitinibe , Humanos , Neoplasias Pulmonares , Quinazolinas/uso terapêutico , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA