Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurosurg Rev ; 45(6): 3779-3788, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36322203

RESUMO

Cerebrospinal fluid (CSF) leakage is a well-known complication of craniotomies and there are several dural closure techniques. One commonly used commercial product as adjunct for dural closure is the collagen-bound fibrin sealant TachoSil®. We analysed whether the addition of TachoSil has beneficial effects on postoperative complications and outcomes. Our prospective, institutional database was retrospectively queried, and 662 patients undergoing craniotomy were included. Three hundred fifty-two were treated with dural suture alone, and in 310, TachoSil was added after primary suture. Our primary endpoint was the rate of postoperative complications associated with CSF leakage. Secondary endpoints included functional, disability and neurological outcome. Systematic review according to PRISMA guidelines was performed to identify studies comparing primary dural closure with and without additional sealants. Postoperative complications associated with CSF leakage occurred in 24 (7.74%) and 28 (7.95%) procedures with or without TachoSil, respectively (p = 0.960). Multivariate analysis confirmed no significant differences in complication rate between the two groups (aOR 0.97, 95% CI 0.53-1.80, p = 0.930). There were no significant disparities in postoperative functional, disability or neurological scores. The systematic review identified 661 and included 8 studies in the qualitative synthesis. None showed a significant superiority of additional sealants over standard technique regarding complications, rates of revision surgery or outcome. According to our findings, we summarize that routinary use of TachoSil and similar products as adjuncts to primary dural sutures after intracranial surgical procedures is safe but without clear advantage in complication avoidance or outcome. Future studies should investigate whether their use is beneficial in high-risk settings.


Assuntos
Dura-Máter , Adesivo Tecidual de Fibrina , Humanos , Adesivo Tecidual de Fibrina/uso terapêutico , Dura-Máter/cirurgia , Estudos Retrospectivos , Estudos Prospectivos , Estudos de Coortes , Vazamento de Líquido Cefalorraquidiano/etiologia , Procedimentos Neurocirúrgicos/métodos , Complicações Pós-Operatórias/etiologia , Colágeno/uso terapêutico
2.
Oncol Lett ; 19(4): 2649-2656, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32218815

RESUMO

Novel treatments for glioblastoma, the most common malignant primary brain tumor, are urgently required. Type I interferons (IFN) are natural cytokines primarily involved in the defense against viral infections, which may also serve a role in the control of cancer, notably in the suppression of the cancer stem cell phenotype. TG02 is a novel orally available cyclin-dependent kinase 9 inhibitor which induces glioma cell apoptosis without profound caspase activation, which is currently explored in early clinical trials in newly diagnosed and recurrent glioblastoma. In the present study, human glioma-initiating cell line models were used to explore whether IFN-ß modulates the anti-glioma activity of TG02. The present study employed immunoblotting to assess protein levels, several viability assays and gene silencing strategies to assess gene function. Pre-exposure to IFN-ß sensitized human glioma models to a subsequent exposure to TG02. Combination treatment was associated with increased DEVD-amc cleaving caspase activity that was blocked by the anti-apoptotic protein, BCL2. However, BCL2 did not protect from the synergistic effects of IFN and TG02 on glioma cell growth. Furthermore, although IFN strongly induced pro-apoptotic XIAP-associated factor (XAF) expression, disrupting XAF expression did not abrogate the synergy with TG02. Consistent with that, caspase 3 gene silencing did not abrogate the effects of TG02 or IFN-ß alone or in combination. Finally, it was observed that IFN-ß may indeed modulate the effects of TG02 upstream in the signaling cascade since inhibition of RNA polymerase II phosphorylation, a direct readout of the pharmacodynamic activity of TG02, was facilitated when glioma cells were pre-exposed to IFN-ß. In summary, these data suggest that type I IFN may be combined with TG02 to limit glioblastoma growth, but that the well characterized effects of IFN and TG02 on apoptotic signaling are dispensable for synergistic tumor growth inhibition. Instead, exploring how IFN signaling primes glioma cells for TG02-mediated direct target inhibition may help to design novel and effective pharmacological approaches to glioblastoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA