Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 64(7): 3697-3706, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33591753

RESUMO

Protein arginine methyltransferase 6 (PRMT6) catalyzes monomethylation and asymmetric dimethylation of arginine residues in various proteins, plays important roles in biological processes, and is associated with multiple cancers. To date, a highly selective PRMT6 inhibitor has not been reported. Here we report the discovery and characterization of a first-in-class, highly selective allosteric inhibitor of PRMT6, (R)-2 (SGC6870). (R)-2 is a potent PRMT6 inhibitor (IC50 = 77 ± 6 nM) with outstanding selectivity for PRMT6 over a broad panel of other methyltransferases and nonepigenetic targets. Notably, the crystal structure of the PRMT6-(R)-2 complex and kinetic studies revealed (R)-2 binds a unique, induced allosteric pocket. Additionally, (R)-2 engages PRMT6 and potently inhibits its methyltransferase activity in cells. Moreover, (R)-2's enantiomer, (S)-2 (SGC6870N), is inactive against PRMT6 and can be utilized as a negative control. Collectively, (R)-2 is a well-characterized PRMT6 chemical probe and a valuable tool for further investigating PRMT6 functions in health and disease.


Assuntos
Benzodiazepinonas/farmacologia , Inibidores Enzimáticos/farmacologia , Proteínas Nucleares/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Regulação Alostérica , Sítio Alostérico , Benzodiazepinonas/síntese química , Benzodiazepinonas/metabolismo , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Células HEK293 , Humanos , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteína-Arginina N-Metiltransferases/metabolismo , Estereoisomerismo
2.
Methods ; 175: 30-43, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31809836

RESUMO

Protein arginine methyltransferases (PRMTs) catalyze the transfer of methyl groups to specific arginine residues of their substrates using S-adenosylmethionine as a methyl donor, contributing to regulation of many biological processes including transcription, and DNA damage repair. Dysregulation of PRMT expression is often associated with various diseases including cancers. Different methods have been used to characterize the activities of PRMTs and determine their kinetic parameters including mass spectrometry, radiometric, and antibody-based assays. Here, we present kinetic characterization of PRMTs using a radioactivity-based assay for better comparison along with previously reported values. We also report on full characterization of PRMT9 activity with SAP145 peptide as substrate. We further review the potent, selective and cell-active PRMT inhibitors discovered in recent years to provide a better understanding of available tools to investigate the roles these proteins play in health and disease.


Assuntos
Proliferação de Células/efeitos dos fármacos , Ensaios Enzimáticos/métodos , Inibidores Enzimáticos/química , Neoplasias/enzimologia , Proteína-Arginina N-Metiltransferases/química , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas F-Box/química , Proteínas F-Box/metabolismo , Histonas/química , Humanos , Cinética , Neoplasias/tratamento farmacológico , Filogenia , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/genética , Fatores de Processamento de RNA/química , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo
3.
Nat Commun ; 10(1): 5759, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848333

RESUMO

PRDM9 is a PR domain containing protein which trimethylates histone 3 on lysine 4 and 36. Its normal expression is restricted to germ cells and attenuation of its activity results in altered meiotic gene transcription, impairment of double-stranded breaks and pairing between homologous chromosomes. There is growing evidence for a role of aberrant expression of PRDM9 in oncogenesis and genome instability. Here we report the discovery of MRK-740, a potent (IC50: 80 ± 16 nM), selective and cell-active PRDM9 inhibitor (Chemical Probe). MRK-740 binds in the substrate-binding pocket, with unusually extensive interactions with the cofactor S-adenosylmethionine (SAM), conferring SAM-dependent substrate-competitive inhibition. In cells, MRK-740 specifically and directly inhibits H3K4 methylation at endogenous PRDM9 target loci, whereas the closely related inactive control compound, MRK-740-NC, does not. The discovery of MRK-740 as a chemical probe for the PRDM subfamily of methyltransferases highlights the potential for exploiting SAM in targeting SAM-dependent methyltransferases.


Assuntos
Descoberta de Drogas/métodos , Inibidores Enzimáticos/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Sondas Moleculares/farmacologia , Cristalografia por Raios X , Metilação de DNA/efeitos dos fármacos , Inibidores Enzimáticos/química , Células HEK293 , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/ultraestrutura , Histonas/metabolismo , Humanos , Concentração Inibidora 50 , Simulação de Dinâmica Molecular , Sondas Moleculares/química , Domínios Proteicos , S-Adenosilmetionina/metabolismo
4.
Nat Commun ; 10(1): 2517, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31175292

RESUMO

Hyper-activated STAT5B variants are high value oncology targets for pharmacologic intervention. STAT5BN642H, a frequently-occurring oncogenic driver mutation, promotes aggressive T-cell leukemia/lymphoma in patient carriers, although the molecular origins remain unclear. Herein, we emphasize the aggressive nature of STAT5BN642H in driving T-cell neoplasia upon hematopoietic expression in transgenic mice, revealing evidence of multiple T-cell subset organ infiltration. Notably, we demonstrate STAT5BN642H-driven transformation of γδ T-cells in in vivo syngeneic transplant models, comparable to STAT5BN642H patient γδ T-cell entities. Importantly, we present human STAT5B and STAT5BN642H crystal structures, which propose alternative mutation-mediated SH2 domain conformations. Our biophysical data suggests STAT5BN642H can adopt a hyper-activated and hyper-inactivated state with resistance to dephosphorylation. MD simulations support sustained interchain cross-domain interactions in STAT5BN642H, conferring kinetic stability to the mutant anti-parallel dimer. This study provides a molecular explanation for the STAT5BN642H activating potential, and insights into pre-clinical models for targeted intervention of hyper-activated STAT5B.


Assuntos
Linfócitos Intraepiteliais , Leucemia de Células T/genética , Linfoma de Células T/genética , Mutação , Fator de Transcrição STAT5/genética , Animais , Neoplasias Hematológicas/genética , Humanos , Camundongos , Camundongos Transgênicos , Simulação de Acoplamento Molecular , Domínios de Homologia de src
5.
ACS Med Chem Lett ; 9(7): 612-617, 2018 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-30034588

RESUMO

Protein arginine methyltransferase 5 (PRMT5) is a type II arginine methyltransferase that catalyzes the formation of symmetric dimethylarginine in a number of nuclear and cytoplasmic proteins. Although the cellular functions of PRMT5 have not been fully unraveled, it has been implicated in a number of cellular processes like RNA processing, signal transduction, and transcriptional regulation. PRMT5 is ubiquitously expressed in most tissues and its expression has been shown to be elevated in several cancers including breast cancer, gastric cancer, glioblastoma, and lymphoma. Here, we describe the identification and characterization of a novel and selective PRMT5 inhibitor with potent in vitro and in vivo activity. Compound 1 (also called LLY-283) inhibited PRMT5 enzymatic activity in vitro and in cells with IC50 of 22 ± 3 and 25 ± 1 nM, respectively, while its diastereomer, compound 2 (also called LLY-284), was much less active. Compound 1 also showed antitumor activity in mouse xenografts when dosed orally and can serve as an excellent probe molecule for understanding the biological function of PRMT5 in normal and cancer cells.

6.
Oncotarget ; 9(26): 18480-18493, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29719619

RESUMO

Protein arginine methyltransferase (PRMT) 4 (also known as coactivator-associated arginine methyltransferase 1; CARM1) is involved in a variety of biological processes and is considered as a candidate oncogene owing to its overexpression in several types of cancer. Selective PRMT4 inhibitors are useful tools for clarifying the molecular events regulated by PRMT4 and for validating PRMT4 as a therapeutic target. Here, we report the discovery of TP-064, a potent, selective, and cell-active chemical probe of human PRMT4 and its co-crystal structure with PRMT4. TP-064 inhibited the methyltransferase activity of PRMT4 with high potency (half-maximal inhibitory concentration, IC50 < 10 nM) and selectivity over other PRMT family proteins, and reduced arginine dimethylation of the PRMT4 substrates BRG1-associated factor 155 (BAF155; IC50= 340 ± 30 nM) and Mediator complex subunit 12 (MED12; IC50 = 43 ± 10 nM). TP-064 treatment inhibited the proliferation of a subset of multiple myeloma cell lines, with affected cells arrested in G1 phase of the cell cycle. TP-064 and its negative control (TP-064N) will be valuable tools to further investigate the biology of PRMT4 and the therapeutic potential of PRMT4 inhibition.

7.
Protein Sci ; 26(4): 662-676, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28160335

RESUMO

The SET1 family of proteins, and in particular MLL1, are essential regulators of transcription and key mediators of normal development and disease. Here, we summarize the detailed characterization of the methyltransferase activity of SET1 complexes and the role of the key subunits, WDR5, RbBP5, ASH2L, and DPY30. We present new data on full kinetic characterization of human MLL1, MLL3, SET1A, and SET1B trimeric, tetrameric, and pentameric complexes to elaborate on substrate specificities and compare our findings with what has been reported before. We also review exciting recent work identifying potent inhibitors of oncogenic MLL1 function through disruption of protein-protein interactions within the MLL1 complex.


Assuntos
Inibidores Enzimáticos/química , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/química , Complexos Multienzimáticos/antagonistas & inibidores , Proteína de Leucina Linfoide-Mieloide/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Proteína de Leucina Linfoide-Mieloide/química , Proteína de Leucina Linfoide-Mieloide/metabolismo
8.
Nat Chem Biol ; 13(3): 317-324, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28114273

RESUMO

Protein lysine methyltransferases (PKMTs) regulate diverse physiological processes including transcription and the maintenance of genomic integrity. Genetic studies suggest that the PKMTs SUV420H1 and SUV420H2 facilitate proficient nonhomologous end-joining (NHEJ)-directed DNA repair by catalyzing the di- and trimethylation (me2 and me3, respectively) of lysine 20 on histone 4 (H4K20). Here we report the identification of A-196, a potent and selective inhibitor of SUV420H1 and SUV420H2. Biochemical and co-crystallization analyses demonstrate that A-196 is a substrate-competitive inhibitor of both SUV4-20 enzymes. In cells, A-196 induced a global decrease in H4K20me2 and H4K20me3 and a concomitant increase in H4K20me1. A-196 inhibited 53BP1 foci formation upon ionizing radiation and reduced NHEJ-mediated DNA-break repair but did not affect homology-directed repair. These results demonstrate the role of SUV4-20 enzymatic activity in H4K20 methylation and DNA repair. A-196 represents a first-in-class chemical probe of SUV4-20 to investigate the role of histone methyltransferases in genomic integrity.


Assuntos
Inibidores Enzimáticos/farmacologia , Epigênese Genética/efeitos dos fármacos , Instabilidade Genômica/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Linhagem Celular Tumoral , Cristalografia por Raios X , Reparo do DNA/efeitos dos fármacos , Inibidores Enzimáticos/química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Metilação/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular
9.
Biochem J ; 473(19): 3049-63, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27480107

RESUMO

PRMT6 is a type I protein arginine methyltransferase, generating the asymmetric dimethylarginine mark on proteins such as histone H3R2. Asymmetric dimethylation of histone H3R2 by PRMT6 acts as a repressive mark that antagonizes trimethylation of H3 lysine 4 by the MLL histone H3K4 methyltransferase. PRMT6 is overexpressed in several cancer types, including prostate, bladder and lung cancers; therefore, it is of great interest to develop potent and selective inhibitors for PRMT6. Here, we report the synthesis of a potent bisubstrate inhibitor GMS [6'-methyleneamine sinefungin, an analog of sinefungin (SNF)], and the crystal structures of human PRMT6 in complex, respectively, with S-adenosyl-L-homocysteine (SAH) and the bisubstrate inhibitor GMS that shed light on the significantly improved inhibition effect of GMS on methylation activity of PRMT6 compared with SAH and an S-adenosyl-L-methionine competitive methyltransferase inhibitor SNF. In addition, we also crystallized PRMT6 in complex with SAH and a short arginine-containing peptide. Based on the structural information here and available in the PDB database, we proposed a mechanism that can rationalize the distinctive arginine methylation product specificity of different types of arginine methyltransferases and pinpoint the structural determinant of such a specificity.


Assuntos
Arginina/metabolismo , Proteínas Nucleares/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Cristalografia por Raios X , Humanos , Metilação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Conformação Proteica , Proteína-Arginina N-Metiltransferases/química , Proteína-Arginina N-Metiltransferases/genética , Homologia de Sequência de Aminoácidos
10.
J Med Chem ; 59(14): 6838-47, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27390919

RESUMO

Protein arginine methyltransferases (PRMTs) represent an emerging target class in oncology and other disease areas. So far, the most successful strategy to identify PRMT inhibitors has been to screen large to medium-size chemical libraries. Attempts to develop PRMT inhibitors using receptor-based computational methods have met limited success. Here, using virtual screening approaches, we identify 11 CARM1 (PRMT4) inhibitors with ligand efficiencies ranging from 0.28 to 0.84. CARM1 selective hits were further validated by orthogonal methods. Two structure-based rounds of optimization produced 27 (SGC2085), a CARM1 inhibitor with an IC50 of 50 nM and more than hundred-fold selectivity over other PRMTs. These results indicate that virtual screening strategies can be successfully applied to Rossmann-fold protein methyltransferases.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Guanilato Ciclase/antagonistas & inibidores , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Guanilato Ciclase/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
11.
J Med Chem ; 59(3): 1176-83, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26824386

RESUMO

Protein methyltransferases (PMTs) are a promising target class in oncology and other disease areas. They are composed of SET domain methyltransferases and structurally unrelated Rossman-fold enzymes that include protein arginine methyltransferases (PRMTs). In the absence of a well-defined medicinal chemistry tool-kit focused on PMTs, most current inhibitors were identified by screening large and diverse libraries of leadlike molecules. So far, no successful fragment-based approach was reported against this target class. Here, by deconstructing potent PRMT inhibitors, we find that chemical moieties occupying the substrate arginine-binding site can act as efficient fragment inhibitors. Screening a fragment library against PRMT6 produced numerous hits, including a 300 nM inhibitor (ligand efficiency of 0.56) that decreased global histone 3 arginine 2 methylation in cells, and can serve as a warhead for the development of PRMT chemical probes.


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteínas Repressoras/antagonistas & inibidores , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo , Relação Estrutura-Atividade
12.
ACS Chem Biol ; 11(3): 772-781, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26598975

RESUMO

Protein arginine methyltransferases (PRMTs) play a crucial role in a variety of biological processes. Overexpression of PRMTs has been implicated in various human diseases including cancer. Consequently, selective small-molecule inhibitors of PRMTs have been pursued by both academia and the pharmaceutical industry as chemical tools for testing biological and therapeutic hypotheses. PRMTs are divided into three categories: type I PRMTs which catalyze mono- and asymmetric dimethylation of arginine residues, type II PRMTs which catalyze mono- and symmetric dimethylation of arginine residues, and type III PRMT which catalyzes only monomethylation of arginine residues. Here, we report the discovery of a potent, selective, and cell-active inhibitor of human type I PRMTs, MS023, and characterization of this inhibitor in a battery of biochemical, biophysical, and cellular assays. MS023 displayed high potency for type I PRMTs including PRMT1, -3, -4, -6, and -8 but was completely inactive against type II and type III PRMTs, protein lysine methyltransferases and DNA methyltransferases. A crystal structure of PRMT6 in complex with MS023 revealed that MS023 binds the substrate binding site. MS023 potently decreased cellular levels of histone arginine asymmetric dimethylation. It also reduced global levels of arginine asymmetric dimethylation and concurrently increased levels of arginine monomethylation and symmetric dimethylation in cells. We also developed MS094, a close analog of MS023, which was inactive in biochemical and cellular assays, as a negative control for chemical biology studies. MS023 and MS094 are useful chemical tools for investigating the role of type I PRMTs in health and disease.


Assuntos
Antineoplásicos/farmacologia , Etanolaminas/farmacologia , Etilenodiaminas/farmacologia , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Pirróis/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Etanolaminas/química , Etilenodiaminas/química , Humanos , Modelos Moleculares , Estrutura Molecular , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Pirróis/química
13.
Biochim Biophys Acta ; 1850(9): 1842-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26002201

RESUMO

BACKGROUND: Dysregulation of methylation of lysine 36 on histone H3 (H3K36) have been implicated in a variety of diseases including cancers. ASH1L and SETD2 are two enzymes among others that catalyze H3K36 methylation. H3K4 methylation has also been reported for ASH1L. METHODS: Radioactivity-based enzyme assays, Western and immunoblotting using specific antibodies and molecular modeling were used to characterize substrate specificity of ASH1L and SETD2. RESULTS: Here we report on the assay development and kinetic characterization of ASH1L and SETD2 and their substrate specificities in vitro. Both enzymes were active with recombinant nucleosome as substrate. However, SETD2 but not ASH1L methylated histone peptides as well indicating that the interaction of the basic post-SET extension with substrate may not be critical for SETD2 activity. Both enzymes were not active with nucleosome containing a H3K36A mutation indicating their specificity for H3K36. Analyzing the methylation state of the products of ASH1L and SETD2 reactions also confirmed that both enzymes mono- and dimethylate H3K36 and are inactive with H3K4 as substrate, and that only SETD2 is able to trimethylate H3K36 in vitro. CONCLUSIONS: We determined the kinetic parameters for ASH1L and SETD2 activity enabling screening for inhibitors that can be used to further investigate the roles of these two proteins in health and disease. Both ASH1L and SETD2 are H3K36 specific methyltransferases but only SETD2 can trimethylate this mark. The basic post-SET extension is critical for ASH1L but not SETD2 activity. GENERAL SIGNIFICANCE: We provide full kinetic characterization of ASH1L and SETD2 activity.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Proteínas de Ligação a DNA/química , Histona-Lisina N-Metiltransferase/química , Humanos , Cinética , Metilação , Modelos Moleculares , Dados de Sequência Molecular , Especificidade por Substrato , Fatores de Transcrição/química
14.
ACS Med Chem Lett ; 6(4): 408-12, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25893041

RESUMO

The protein arginine methyltransferases PRMT7 and PRMT5, respectively, monomethylate and symmetrically dimethylate arginine side-chains of proteins involved in diverse cellular mechanisms, including chromatin-mediated control of gene transcription, splicing, and the RAS to ERK transduction cascade. It is believed that PRMT5 and PRMT7 act in conjunction to methylate their substrates, and genetic deletions support the notion that these enzymes derepress cell proliferation and migration in cancer. Using available structures of PRMT5, we designed DS-437, a PRMT5 inhibitor with an IC50 value of 6 µM against both PRMT5 and PRMT7 that is inactive against 29 other human protein-, DNA-, and RNA-methyltransferases and inhibits symmetrical dimethylation of PRMT5 substrates in cells. This compound behaves as a cofactor competitor and represents a valid scaffold to interrogate the potential of the PRMT5-PRMT7 axis as a target for therapy.

15.
Angew Chem Int Ed Engl ; 54(17): 5166-70, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25728001

RESUMO

PRMT3 catalyzes the asymmetric dimethylation of arginine residues of various proteins. It is essential for maturation of ribosomes, may have a role in lipogenesis, and is implicated in several diseases. A potent, selective, and cell-active PRMT3 inhibitor would be a valuable tool for further investigating PRMT3 biology. Here we report the discovery of the first PRMT3 chemical probe, SGC707, by structure-based optimization of the allosteric PRMT3 inhibitors we reported previously, and thorough characterization of this probe in biochemical, biophysical, and cellular assays. SGC707 is a potent PRMT3 inhibitor (IC50 =31±2 nM, KD =53±2 nM) with outstanding selectivity (selective against 31 other methyltransferases and more than 250 non-epigenetic targets). The mechanism of action studies and crystal structure of the PRMT3-SGC707 complex confirm the allosteric inhibition mode. Importantly, SGC707 engages PRMT3 and potently inhibits its methyltransferase activity in cells. It is also bioavailable and suitable for animal studies. This well-characterized chemical probe is an excellent tool to further study the role of PRMT3 in health and disease.


Assuntos
Inibidores Enzimáticos/química , Isoquinolinas/química , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Regulação Alostérica , Sítios de Ligação , Calorimetria , Linhagem Celular Tumoral , Inibidores Enzimáticos/metabolismo , Células HEK293 , Histonas , Humanos , Isoquinolinas/metabolismo , Metilação , Simulação de Dinâmica Molecular , Mutagênese , Ligação Proteica , Estrutura Terciária de Proteína , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Ressonância de Plasmônio de Superfície
16.
Anal Biochem ; 463: 54-60, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25010373

RESUMO

Covalent modifications, such as methylation and demethylation of lysine residues in histones, play important roles in chromatin dynamics and the regulation of gene expression. The lysine demethylases (KDMs) catalyze the demethylation of lysine residues on histone tails and are associated with diverse human diseases, including cancer, and are therefore proposed as targets for the therapeutic modulation of gene transcription. High-throughput assays have been developed to find inhibitors of KDMs, most of which are fluorescence-based assays. Here we report the development of a coupled scintillation proximity assay (SPA) for 3 KDMs: KDM1A (LSD1), KDM3A (JMJD1A), and KDM4A (JMJD2A). In this assay methylated peptides are first demethylated by a KDM, and a protein methyltransferase (PMT) is added to methylate the resulting peptide with tritiated S-(5'-adenosyl)-l-methionine. The enzyme activities were optimized and kinetic parameters were determined. These robust coupled assays are suitable for screening KDMs in 384-well format (Z' factors of 0.70-0.80), facilitating discovery of inhibitors in the quest for cancer therapeutics.


Assuntos
Ensaios Enzimáticos , Histona Desmetilases/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Histona Desmetilases/química , Humanos , Histona Desmetilases com o Domínio Jumonji/química , Histona Desmetilases com o Domínio Jumonji/metabolismo , Cinética , Lisina/metabolismo , Metilação , Ligação Proteica , Proteínas Metiltransferases/metabolismo
17.
Nat Commun ; 5: 3952, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24853335

RESUMO

Pathogens can interfere with vital biological processes of their host by mimicking host proteins. The NS1 protein of the influenza A H3N2 subtype possesses a histone H3K4-like sequence at its carboxyl terminus and has been reported to use this mimic to hijack host proteins. However, this mimic lacks a free N-terminus that is essential for binding to many known H3K4 readers. Here we show that the double chromodomains of CHD1 adopt an 'open pocket' to interact with the free N-terminal amine of H3K4, and the open pocket permits the NS1 mimic to bind in a distinct conformation. We also explored the possibility that NS1 hijacks other cellular proteins and found that the NS1 mimic has access to only a subset of chromatin-associated factors, such as WDR5. Moreover, methylation of the NS1 mimic can not be reversed by the H3K4 demethylase LSD1. Overall, we thus conclude that the NS1 mimic is an imperfect histone mimic.


Assuntos
Histonas/metabolismo , Interações Hospedeiro-Patógeno , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Calorimetria , Cristalografia por Raios X , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histona Desmetilases/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Vírus da Influenza A Subtipo H3N2/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Espectrometria de Massas , Metilação , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Relação Estrutura-Atividade
18.
J Biol Chem ; 289(17): 12177-12188, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24634223

RESUMO

PRDM9 (PR domain-containing protein 9) is a meiosis-specific protein that trimethylates H3K4 and controls the activation of recombination hot spots. It is an essential enzyme in the progression of early meiotic prophase. Disruption of the PRDM9 gene results in sterility in mice. In human, several PRDM9 SNPs have been implicated in sterility as well. Here we report on kinetic studies of H3K4 methylation by PRDM9 in vitro indicating that PRDM9 is a highly active histone methyltransferase catalyzing mono-, di-, and trimethylation of the H3K4 mark. Screening for other potential histone marks, we identified H3K36 as a second histone residue that could also be mono-, di-, and trimethylated by PRDM9 as efficiently as H3K4. Overexpression of PRDM9 in HEK293 cells also resulted in a significant increase in trimethylated H3K36 and H3K4 further confirming our in vitro observations. Our findings indicate that PRDM9 may play critical roles through H3K36 trimethylation in cells.


Assuntos
Metilação de DNA , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Calorimetria , Histonas/química , Humanos , Cinética , Espectrometria de Massas , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA