Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35216161

RESUMO

The plasmatic von Willebrand factor (VWF) circulates in a compact form unable to bind platelets. Upon shear stress, the VWF A1 domain is exposed, allowing VWF-binding to platelet glycoprotein Ib-V-IX (GPIbα chain). For a better understanding of the role of this interaction in cardiovascular disease, molecules are needed to specifically interfere with the opened VWF A1 domain interaction with GPIbα. Therefore, we in silico designed and chemically synthetized stable cyclic peptides interfering with the platelet-binding of the VWF A1 domain per se or complexed with botrocetin. Selected peptides (26-34 amino acids) with the lowest-binding free energy were: the monocyclic mono- vOn Willebrand factoR-GPIbα InTerference (ORbIT) peptide and bicyclic bi-ORbIT peptide. Interference of the peptides in the binding of VWF to GPIb-V-IX interaction was retained by flow cytometry in comparison with the blocking of anti-VWF A1 domain antibody CLB-RAg35. In collagen and VWF-dependent whole-blood thrombus formation at a high shear rate, CLB-RAg35 suppressed stable platelet adhesion as well as the formation of multilayered thrombi. Both peptides phenotypically mimicked these changes, although they were less potent than CLB-RAg35. The second-round generation of an improved peptide, namely opt-mono-ORbIT (28 amino acids), showed an increased inhibitory activity under flow. Accordingly, our structure-based design of peptides resulted in physiologically effective peptide-based inhibitors, even for convoluted complexes such as GPIbα-VWF A1.


Assuntos
Plaquetas/fisiologia , Peptídeos/química , Agregação Plaquetária , Complexo Glicoproteico GPIb-IX de Plaquetas/química , Fator de von Willebrand/química , Animais , Sítios de Ligação , Plaquetas/metabolismo , Células Cultivadas , Cavalos , Humanos , Microfluídica , Peptídeos/metabolismo , Ligação Proteica , Estresse Mecânico , Fator de von Willebrand/metabolismo
2.
Future Med Chem ; 11(9): 1015-1033, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31141413

RESUMO

The horizon of drug discovery is currently expanding to target and modulate protein-protein interactions (PPIs) in globular proteins and intrinsically disordered proteins that are involved in various diseases. To either interrupt or stabilize PPIs, the 3D structure of target protein-protein (or protein-peptide) complexes can be exploited to rationally design PPI modulators (inhibitors or stabilizers) through structure-based molecular design. In this review, we present an overview of experimental and computational methods that can be used to determine 3D structures of protein-protein complexes. Several approaches including rational and in silico methods that can be applied to design peptides, peptidomimetics and small compounds by utilization of determined 3D protein-protein/peptide complexes are summarized and illustrated.


Assuntos
Desenho de Fármacos , Peptídeos/farmacologia , Peptidomiméticos/farmacologia , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas/metabolismo , Animais , Descoberta de Drogas/métodos , Humanos , Simulação de Acoplamento Molecular , Peptídeos/química , Peptidomiméticos/química , Ligação Proteica , Proteínas/química
3.
Thromb Haemost ; 118(1): 28-41, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29304523

RESUMO

ADAMTS13 (A D: isintegrin A: nd M: etalloprotease with a T: hromboS: pondin type-1 motif, member 13: ) and von Willebrand factor (VWF) can be considered as scale weights which control platelet adhesion during primary haemostasis. In a very uncommon condition designated thrombotic thrombocytopenic purpura (TTP), functional absence of ADAMTS13 tips the balance toward VWF-mediated platelet adhesion in the microcirculation. TTP is associated with a high mortality and arises from either a congenital or acquired autoimmune deficiency of the plasma enzyme ADAMTS13. In case of acquired ADAMTS13 deficiency, autoantibodies bind to and inhibit the function of ADAMTS13. Currently available treatments of TTP aim to supply ADAMTS13 through plasma exchange or are aimed at B-cell depletion with rituximab. None of the available therapeutics, however, aims at protection of ADAMTS13 from circulating autoantibodies. In this review, our aim is to describe the structure-function relationship of ADAMTS13 employing homology models and previously published crystal structures. Structural bioinformatics investigation of ADAMTS13 reveals many insights and explains how mutations and autoantibodies may lead to the pathophysiology of TTP. The results of these studies provide a roadmap for the further development of rationally designed therapeutics for the treatment of patients with acquired TTP. In addition, we share our opinion on the state of the art of the open-closed conformations of ADAMTS13 which regulate the activity of this highly specific VWF cleaving protease.


Assuntos
Proteína ADAMTS13/química , Púrpura Trombocitopênica Trombótica/terapia , Animais , Autoanticorpos/química , Doenças Autoimunes/imunologia , Biologia Computacional , Cristalografia por Raios X , Cisteína/química , Modelos Animais de Doenças , Humanos , Imageamento Tridimensional , Mutação , Peptídeos/química , Conformação Proteica , Domínios Proteicos , Púrpura Trombocitopênica Trombótica/imunologia , Rituximab/farmacologia , Relação Estrutura-Atividade , Trombospondinas/química , Fator de von Willebrand/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA