Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38674102

RESUMO

Mesenchymal stem cells (MSCs) are an integral part of the tumor microenvironment (TME); however, their role is somewhat controversial: conflicting reports suggest that, depending on the stage of tumor development, MSCs can either support or suppress tumor growth and spread. Additionally, the influence of MSCs on drug resistance is also ambiguous. Previously, we showed that, despite MSCs proliferating significantly more slowly than cancer cells, there are chemotherapeutic drugs which proved to be similarly toxic to both cell types. Here we established 2D co-cultures and 3D co-culture spheroids from different ratios of GFP-expressing, adipose tissue-derived MSCs and A431 epidermoid carcinoma cells tagged with mCherry to investigate the effect of MSCs on cancer cell growth, survival, and drug sensitivity. We examined the cytokine secretion profile of mono- and co-cultures, explored the inner structure of the spheroids, applied MSC-(nutlin-3) and cancer cell-targeting (cisplatin) treatments separately, monitored the response with live-cell imaging and identified a new, double-fluorescent cell type emerging from these cultures. In 2D co-cultures, no effect on proliferation or drug sensitivity was observed, regardless of the changes in cytokine secretion induced by the co-culture. Conversely, 3D spheroids developed a unique internal structure consisting of MSCs, which significantly improved cancer cell survival and resilience to treatment, suggesting that physical proximity and cell-cell connections are required for MSCs to considerably affect nearby cancer cells. Our results shed light on MSC-cancer cell interactions and could help design new, better treatment options for tumors.


Assuntos
Técnicas de Cocultura , Células-Tronco Mesenquimais , Esferoides Celulares , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Humanos , Esferoides Celulares/efeitos dos fármacos , Linhagem Celular Tumoral , Microambiente Tumoral , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Tolerância a Medicamentos , Citocinas/metabolismo
2.
Cells ; 11(19)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36230904

RESUMO

Mesenchymal stem cells (MSCs) or fibroblasts are one of the most abundant cell types in the tumor microenvironment (TME) exerting various anti- and pro-apoptotic effects during tumorigenesis, invasion, and drug treatment. Despite the recently discovered importance of MSCs in tumor progression and therapy, the response of these cells to chemotherapeutics compared to cancer cells is rarely investigated. A widely accepted view is that these naive MSCs have higher drug tolerance than cancer cells due to a significantly lower proliferation rate. Here, we examine the differences and similarities in the sensitivity of MSCs and cancer cells to nine diverse chemotherapy agents and show that, although MSCs have a slower cell cycle, these cells are still sensitive to various drugs. Surprisingly, MSCs showed similar sensitivity to a panel of compounds, however, suffered fewer DNA double-stranded breaks, did not enter into a senescent state, and was virtually incapable of apoptosis. Our results suggest that MSCs and cancer cells have different cell fates after drug treatment, and this could influence therapy outcome. These findings could help design drug combinations targeting both MSCs and cancer cells in the TME.


Assuntos
Antineoplásicos , Células-Tronco Mesenquimais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Apoptose , Carcinogênese/patologia , DNA/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Microambiente Tumoral
3.
RNA Biol ; 18(8): 1170-1180, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33052778

RESUMO

One of the longest human microRNA (miRNA) clusters is located on chromosome 19 (C19MC), containing 46 miRNA genes, which were considered to be expressed simultaneously and at similar levels from a common long noncoding transcript. Investigating the two tissue types where C19MC is exclusively expressed, we could show that there is a tissue-specific and chromosomal position-dependent decrease in mature miRNA levels towards the 3' end of the cluster in embryonic stem cells but not in placenta. Although C19MC transcription level is significantly lower in stem cells, this gradual decrease is not present at the primary miRNA levels, indicating that a difference in posttranscriptional processing could explain this observation. By depleting Drosha, the nuclease component of the Microprocessor complex, we could further enhance the positional decrease in stem cells, demonstrating that a tissue-specific, local availability of the Microprocessor complex could lie behind the phenomenon. Moreover, we could describe a tissue-specific promoter being exclusively active in placenta, and the epigenetic mark analysis suggested the presence of several putative enhancer sequences in this region. Performing specific chromatin immunoprecipitation followed by quantitative real-time PCR experiments we could show a strong association of Drosha with selected enhancer regions in placenta, but not in embryonic stem cells. These enhancers could provide explanation for a more efficient co-transcriptional recruitment of the Microprocessor, and therefore a more efficient processing of pri-miRNAs throughout the cluster in placenta. Our results point towards a new model where tissue-specific, posttranscriptional 'fine-tuning' can differentiate among miRNAs that are expressed simultaneously from a common precursor.


Assuntos
Cromossomos Humanos Par 19/química , Células-Tronco Embrionárias Humanas/metabolismo , MicroRNAs/genética , Placenta/metabolismo , Precursores de RNA/genética , Processamento Pós-Transcricional do RNA , Ribonuclease III/genética , Linhagem Celular Tumoral , Elementos Facilitadores Genéticos , Epigênese Genética , Feminino , Células-Tronco Embrionárias Humanas/citologia , Humanos , MicroRNAs/metabolismo , Família Multigênica , Especificidade de Órgãos , Placenta/citologia , Gravidez , Precursores de RNA/metabolismo , Ribonuclease III/deficiência , Transcrição Gênica
4.
PLoS One ; 13(4): e0194925, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29649238

RESUMO

The ABCG2 multidrug transporter provides resistance against various endo- and xenobiotics, and protects the stem cells against toxins and stress conditions. We have shown earlier that a GFP-tagged version of ABCG2 is fully functional and may be used to follow the expression, localization and function of this transporter in living cells. In the present work we have overexpressed GFP-ABCG2, driven by a constitutive (CAG) promoter, in HUES9 human embryonic stem cells. Stem cell clones were generated to express the wild-type and a substrate-mutant (R482G) GFP-ABCG2 variant, by using the Sleeping Beauty transposon system. We found that the stable overexpression of these transgenes did not change the pluripotency and growth properties of the stem cells, nor their differentiation capacity to hepatocytes or cardiomyocytes. ABCG2 overexpression provided increased toxin resistance in the stem cells, and protected the derived cardiomyocytes against doxorubicin toxicity. These studies document the potential of a stable ABCG2 expression for engineering toxin-resistant human pluripotent stem cells and selected stem cell derived tissues.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Resistência a Múltiplos Medicamentos , Células-Tronco Embrionárias/metabolismo , Proteínas de Neoplasias/genética , Diferenciação Celular , Doxorrubicina/química , Células-Tronco Embrionárias/citologia , Proteínas de Fluorescência Verde/metabolismo , Hepatócitos/metabolismo , Humanos , Microscopia Confocal , Mitoxantrona/química , Mutação , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Transgenes
5.
Biochim Biophys Acta ; 1859(7): 943-51, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27191194

RESUMO

ABCG2 is a multidrug transporter with wide substrate specificity, and is believed to protect several cell types from various xenobiotics and endobiotics. This "guardian" function is important in numerous cell types and tissue barriers but becomes disadvantageous by being responsible for the multidrug resistance phenotype in certain tumor cells. ABCG2 regulation at the protein level has already been extensively studied, however, regulation at the mRNA level, especially the functional role of the various 5' untranslated exon variants (5' UTRs) has been elusive. In the present work, we describe a comprehensive characterization of four ABCG2 mRNA variants with different exon 1 sequences, investigate drug inducibility, stem cell specificity, mRNA stability, and translation efficiency. Although certain variants (E1B and E1C) are considered as "constitutive" mRNA isoforms, we show that chemotoxic drugs significantly alter the expression pattern of distinct ABCG2 mRNA isoforms. When examining human embryonic stem cell lines, we provide evidence that variant E1A has an expression pattern coupled to undifferentiated stem cell stage, as its transcript level is regulated parallel to mRNAs of Oct4 and Nanog pluripotency marker genes. When characterizing the four exon 1 variants we found no significant differences in terms of mRNA stabilities and half-lives of the isoforms. In contrast, variant E1U showed markedly lower translation efficiency both at the total protein level or regarding the functional presence in the plasma membrane. Taken together, these results indicate that the different 5' UTR variants play an important role in cell type specific regulation and fine tuning of ABCG2 expression.


Assuntos
Regiões 5' não Traduzidas , Transportadores de Cassetes de Ligação de ATP/genética , Resistência a Múltiplos Medicamentos/genética , Proteínas de Neoplasias/genética , Polimorfismo Genético , Células-Tronco/fisiologia , Regiões 5' não Traduzidas/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Animais , Células Cultivadas , Éxons/genética , Células HEK293 , Humanos , Células MCF-7 , Camundongos , Especificidade de Órgãos/genética
6.
Cytometry B Clin Cytom ; 86(5): 299-310, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24729538

RESUMO

BACKGROUND: ATP-binding cassette (ABC) transporters have key roles in various physiological functions as well as providing chemical defense and stress tolerance in human tissues. In this study, we have examined the expression pattern of all ABC proteins in pluripotent human embryonic stem cells (hESCs) and in their differentiated progenies. We paid special attention to the cellular expression and localization of multidrug transporter ABC proteins. METHODS: Stem cell differentiation was carried out without chemical induction or cell sorting, and specialized cell types were separated mechanically. Cellular features regarding pluripotency and tissue identity, as well as ABC transporter expression were studied by flow cytomtery, immuno-microscopy, and qPCR-based low-density arrays. RESULTS: Pluripotent hESCs and differentiated cell types (cardiomyocytes, neuronal cells, and mesenchymal stem cells) were distinguished by morphology, immunostaining markers, and selected mRNA expression patterns. We found that the mRNA expression levels of the 48 human ABC proteins also clearly distinguished the pluripotent and the respective differentiated cell types. When multidrug and lipid transporter ABC protein expression was examined by using well characterized specific antibodies by flow cytometry and confocal microscopy, the protein expression data corresponded well to the mRNA expression results. Moreover, the cellular localization of these important human ABC transporter proteins could be established in the pluripotent and differentiated hESC derived samples. CONCLUSIONS: These studies provide valuable information regarding ABC protein expression in human stem cells and their differentiated offspring. The results may also help to obtain further information concerning the specialized cellular functions of selected ABC transporters.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Pluripotentes/metabolismo , Transportadores de Cassetes de Ligação de ATP/biossíntese , Transportadores de Cassetes de Ligação de ATP/genética , Diferenciação Celular , Células Cultivadas , Células-Tronco Embrionárias/citologia , Citometria de Fluxo , Humanos , Células-Tronco Mesenquimais/citologia , Microscopia Confocal , Miócitos Cardíacos/citologia , Neurônios/citologia , Células-Tronco Pluripotentes/citologia , RNA Mensageiro/biossíntese
7.
Am J Pathol ; 182(2): 388-400, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23178076

RESUMO

During progressive tubulointerstitial fibrosis, renal tubular epithelial cells transform into α-smooth muscle actin (SMA)-expressing myofibroblasts via epithelial-to-mesenchymal transition (EMT). SMA expression is regulated by transforming growth factor (TGF)-ß1 and cell contact disruption, through signaling events targeting the serum response factor-myocardin-related transcription factor (MRTF) complex. MRTFs are important regulators of fibrosis, tumor cell invasion, and metastasis. Consistent with the role of MRTFs in tumor progression, suppressor of cancer cell invasion (SCAI) was recently identified as a negative regulator of MRTF. Herein, we studied the role of SCAI in a fibrotic EMT model established on LLC-PK1 cells. SCAI overexpression prevented SMA promoter activation induced by TGF-ß1. When co-expressed, it inhibited the stimulatory effects of MRTF-A, MRTF-B or the constitutive active forms of RhoA, Rac1, or Cdc42 on the SMA promoter. SCAI interfered with TGF-ß1-induced SMA, connective tissue growth factor, and calponin protein expression; it rescued TGF-ß1-induced E-cadherin down-regulation. IHC studies on human kidneys showed that SCAI expression is reduced during fibrosis. Kidneys of diabetic rats and mice with unilateral ureteral obstruction depicted significant loss of SCAI expression. In parallel with the decrease of SCAI protein expression, diabetic rat and mouse kidneys with unilateral ureteral obstruction showed SMA expression, as evidenced by using Western blot analysis. Finally, TGF-ß1 treatment of LLC-PK1 cells attenuated SCAI protein expression. These data suggest that SCAI is a novel transcriptional cofactor that regulates EMT and renal fibrosis.


Assuntos
Transição Epitelial-Mesenquimal , Rim/metabolismo , Rim/patologia , Fatores de Transcrição/metabolismo , Actinas/genética , Animais , Caderinas/genética , Caderinas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibrose , Humanos , Células LLC-PK1 , Camundongos , Proteínas dos Microfilamentos/metabolismo , Regiões Promotoras Genéticas/genética , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Suínos , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta1/farmacologia , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Calponinas
8.
Eur Biophys J ; 42(2-3): 169-79, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22851001

RESUMO

ABCG2 is a plasma membrane multidrug transporter with an established role in the cancer drug-resistance phenotype. This protein is expressed in a variety of tissues, including several types of stem cell. Although ABCG2 is not essential for life, knock-out mice were found to be hypersensitive to xenobiotics and had reduced levels of the side population of hematopoietic stem cells. Previously we have shown that ABCG2 is present in human embryonic stem cell (hESC) lines, with a heterogeneous expression pattern. In this study we examined this heterogeneity, and investigated whether it is related to stress responses in hESCs. We did not find any difference between expression of pluripotency markers in ABCG2-positive and negative hESCs; however, ABCG2-expressing cells had a higher growth rate after cell separation. We found that some harmful conditions (physical stress, drugs, and UV light exposure) are tolerated much better in the presence of ABCG2 protein. This property can be explained by the transporter function which eliminates potential toxic metabolites accumulated during stress conditions. In contrast, mild oxidative stress in hESCs caused rapid internalization of ABCG2, indicating that some environmental factors may induce removal of this transporter from the plasma membrane. On the basis of these results we suggest that a dynamic balance of ABCG2 expression at the population level has the advantage of enabling prompt response to changes in the cellular environment. Such actively maintained heterogeneity might be of evolutionary benefit in protecting special cell types, including pluripotent stem cells.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Estresse Oxidativo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Linhagem Celular , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos da radiação , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Xenobióticos/farmacologia
9.
Mol Cell Endocrinol ; 353(1-2): 57-67, 2012 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-21945604

RESUMO

Pluripotent stem cells represent a new source of biological material allowing the exploration of signaling phenomena during normal cell development and differentiation. Still, the calcium signaling pathways and intracellular calcium responses to various ligands or stress conditions have not been sufficiently explored as yet in embryonic or induced pluripotent stem cells and in their differentiated offspring. This is partly due to the special culturing conditions of these cell types, the rapid morphological and functional changes in heterogeneous cell populations during early differentiation, and methodological problems in cellular calcium measurements. In this paper, we review the currently available data in the literature on calcium signaling in pluripotent stem cells and discuss the potential shortcomings of these studies. Various assay methods are surveyed for obtaining reliable data both in undifferentiated embryonic stem cells and in specific, stem cell-derived human tissues. In this paper, we present the modulation of calcium signaling in human embryonic stem cells (hESC) and in their derivates; mesenchymal stem cell like (MSCl) cells and cardiac tissues using the fluorescent calcium indicator Fluo-4 and confocal microscopy. LPA, trypsin and angiotensin II were effective in inducing calcium signals both in HUES9 and MSCl cells. Histamine and thrombin induced calcium signal exclusively in the MSCl cells, while ATP was effective only in HUES9 cells. There was no calcium signal evoked by GABA, even at relatively high concentrations. In stem cell-derived cardiomyocytes a rapid increase in the beating rate and an increase of the calcium signal peaks could be observed after the addition of adrenaline, while verapamil led to a strong decrease in cellular calcium and stopped spontaneous contractions in a relaxed state.


Assuntos
Sinalização do Cálcio/fisiologia , Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Células-Tronco Embrionárias/citologia , Histamina/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Pluripotentes/citologia , Trombina/metabolismo
10.
Expert Opin Drug Metab Toxicol ; 7(5): 623-42, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21410427

RESUMO

INTRODUCTION: Anticancer tyrosine kinase inhibitors (TKIs) are small molecule hydrophobic compounds designed to arrest aberrant signaling pathways in malignant cells. Multidrug resistance (MDR) ATP binding cassette (ABC) transporters have recently been recognized as important determinants of the general ADME-Tox (absorption, distribution, metabolism, excretion, toxicity) properties of small molecule TKIs, as well as key factors of resistance against targeted anticancer therapeutics. AREAS COVERED: The article summarizes MDR-related ABC transporter interactions with imatinib, nilotinib, dasatinib, gefitinib, erlotinib, lapatinib, sunitinib and sorafenib, including in vitro and in vivo observations. An array of methods developed to study such interactions is presented. Transporter-TKI interactions relevant to the ADME-Tox properties of TKI drugs, primary or acquired cancer TKI resistance, and drug-drug interactions are also reviewed. EXPERT OPINION: Based on the concept presented in this review, TKI anticancer drugs are considered as compounds recognized by the cellular mechanisms handling xenobiotics. Accordingly, novel anticancer therapies should equally focus on the effectiveness of target inhibition and exploration of potential interactions of the designed molecules by membrane transporters. Thus, targeted hydrophobic small molecule compounds should also be screened to evade xenobiotic-sensing cellular mechanisms.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Sistemas de Liberação de Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/farmacocinética
12.
Nephron Exp Nephrol ; 114(3): e117-25, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20016221

RESUMO

BACKGROUND/AIMS: Epithelial-mesenchymal transition of tubular cells into alpha-smooth muscle actin (SMA)-expressing myofibroblasts is a central mechanism in tubulointerstitial fibrosis. Previously, a 'two-hit' model was proposed for epithelial-mesenchymal transition wherein an initial injury of the intercellular contacts and TGF-beta(1) are both required for SMA protein expression in LLC-PK1 cells. The Rho-Rho kinase-myosin light chain-myocardin-related transcription factor (MRTF)-serum response factor (SRF) pathway and Rac1, p21-activated kinase (PAK) and p38 were described as important regulators of MRTF localization and SMA expression. Cdc42 is another small G protein situated upstream of PAK and p38, and is activated upon cell contact disassembly. Here, we investigated its potential role in the regulation of MRTF nuclear shuttling and in the regulation of the SMA promoter. RESULTS: Transfection of a constitutive active (CA) Cdc42 construct alone induced the activation of the SMA promoter. The dominant negative (DN) Cdc42 construct prevented the activation of the promoter induced by cell contact disassembly, and reduced the combined effect of cell contact disruption and TGF-beta(1). SRF showed a marked nuclear accumulation in CA Cdc42-transfected cells. Cdc42 induced the nuclear translocation of MRTF, while DN Cdc42 inhibited its nuclear translocation induced by cell contact disassembly. Blocking PAK, MRTF and p38 by the corresponding DN constructs blunted the effects of CA Cdc42 on the SMA promoter. CONCLUSION: Cdc42 is involved in the regulation of SMA promoter activation through PAK, p38, MRTF and SRF. Cdc42 may be an important regulator of MRTF cellular localization.


Assuntos
Actinas/genética , Células Epiteliais/citologia , Túbulos Renais/patologia , Mesoderma/citologia , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/fisiologia , Transativadores/metabolismo , Proteína cdc42 de Ligação ao GTP/fisiologia , Animais , Células LLC-PK1 , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA