Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Acta Neuropathol ; 147(1): 94, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833073

RESUMO

A recent large genome-wide association study has identified EGFR (encoding the epidermal growth factor EGFR) as a new genetic risk factor for late-onset AD. SHIP2, encoded by INPPL1, is taking part in the signalling and interactome of several growth factor receptors, such as the EGFR. While INPPL1 has been identified as one of the most significant genes whose RNA expression correlates with cognitive decline, the potential alteration of SHIP2 expression and localization during the progression of AD remains largely unknown. Here we report that gene expression of both EGFR and INPPL1 was upregulated in AD brains. SHIP2 immunoreactivity was predominantly detected in plaque-associated astrocytes and dystrophic neurites and its increase was correlated with amyloid load in the brain of human AD and of 5xFAD transgenic mouse model of AD. While mRNA of INPPL1 was increased in AD, SHIP2 protein undergoes a significant solubility change being depleted from the soluble fraction of AD brain homogenates and co-enriched with EGFR in the insoluble fraction. Using FRET-based flow cytometry biosensor assay for tau-tau interaction, overexpression of SHIP2 significantly increased the FRET signal while siRNA-mediated downexpression of SHIP2 significantly decreased FRET signal. Genetic association analyses suggest that some variants in INPPL1 locus are associated with the level of CSF pTau. Our data support the hypothesis that SHIP2 is an intermediate key player of EGFR and AD pathology linking amyloid and tau pathologies in human AD.


Assuntos
Doença de Alzheimer , Encéfalo , Progressão da Doença , Receptores ErbB , Camundongos Transgênicos , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Humanos , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Animais , Encéfalo/patologia , Encéfalo/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Camundongos , Masculino , Idoso , Idoso de 80 Anos ou mais , Solubilidade , Proteínas tau/metabolismo , Proteínas tau/genética , Expressão Gênica
2.
BBA Adv ; 4: 100105, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37842182

RESUMO

INPP5K (inositol polyphosphate 5-phosphatase K) is an endoplasmic reticulum (ER)-resident enzyme that acts as a phosphoinositide (PI) 5-phosphatase, capable of dephosphorylating various PIs including PI 4,5-bisphosphate (PI(4,5)P2), a key phosphoinositide found in the plasma membrane. Given its ER localization and substrate specificity, INPP5K may play a role in ER-plasma membrane contact sites. Furthermore, PI(4,5)P2 serves as a substrate for phospholipase C, an enzyme activated downstream of extracellular agonists acting on Gq-coupled receptors or tyrosine-kinase receptors, leading to IP3 production and subsequent release of Ca2+ from the ER, the primary intracellular Ca2+ storage organelle. In this study, we investigated the impact of INPP5K on ER Ca2+ dynamics using a previously established INPP5K-knockdown U-251 MG glioblastoma cell model. We here describe that loss of INPP5K impairs agonist-induced, IP3 receptor (IP3R)-mediated Ca2+ mobilization in intact cells, while the ER Ca2+ content and store-operated Ca2+ influx remain unaffected. To further elucidate the underlying mechanisms, we examined Ca2+ release in permeabilized cells stimulated with exogenous IP3. Interestingly, the absence of INPP5K also disrupted IP3-induced Ca2+ release events. These results suggest that INPP5K may directly influence IP3R activity through mechanisms yet to be resolved. The findings from this study point towards role of INPP5K in modulating ER calcium dynamics, particularly in relation to IP3-mediated signaling pathways. However, further work is needed to establish the general nature of our findings and to unravel the exact molecular mechanisms underlying the interplay between INNP5K function and Ca2+ signaling.

3.
Cancers (Basel) ; 14(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36291834

RESUMO

GISTs are sarcomas of the gastrointestinal tract often associated with gain-of-function mutations in KIT or PDGFRA receptor genes. While most GISTs initially respond to tyrosine kinase inhibitors, relapses due to acquired resistance frequently occur. The induction of ferroptosis, an iron-dependent form of non-apoptotic cell death, emerged as a novel therapeutic approach in cancers and remains poorly characterized in GISTs. We studied hallmarks of ferroptosis, i.e., lipid peroxidation, iron and glutathione content, and GPX4 protein expression in imatinib-sensitive (GIST882) and -resistant (GIST48) GIST cell lines. GIST cells were highly sensitive to the induction of ferroptosis by RSL3, which was reversed by liproxstatin and deferoxamine. Lipid peroxidation and ferroptosis were mediated by VP and CA3 in GIST cells through a significant decrease in antioxidant defenses. Moreover, VP, but surprisingly not CA3, inhibited a series of target genes downstream of YAP in GIST cells. The ferroptosis marker TFRC was also investigated by immunohistochemistry in GIST tissue arrays. TFRC expression was observed in all samples. High TFRC expression was positively correlated with high-risk GISTs, elevated mitotic count, and YAP nuclear localization, reflecting YAP activation. This study highlights ferroptosis as a novel cell death mechanism in GISTs, and a potential therapeutic target to overcome resistance to tyrosine kinase inhibitors.

4.
Cell Signal ; 73: 109692, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32535200

RESUMO

A tight control of the machineries regulating membrane bending and actin dynamics is very important for the generation of membrane protrusions, which are crucial for cell migration and invasion. Protein/protein and protein/phosphoinositides complexes assemble and disassemble to coordinate these mechanisms, the scaffold properties of the involved proteins playing a prominent role in this organization. The PI 5-phosphatase SHIP2 is a critical enzyme modulating PI(3,4,5)P3, PI(4,5)P2 and PI(3,4)P2 content in the cell. The scaffold properties of SHIP2 contribute to the specific targeting or retention of the protein in particular subcellular domains. Here, we identified IRSp53 as a new binding interactor of SHIP2 proline-rich domain. Both proteins are costained in HEK293T cells protrusions, upon transfection. We showed that the SH3-binding polyproline motif recognized by IRSp53 in SHIP2 is different from the regions targeted by other PRR binding partners i.e., CIN85, ITSN or even Mena a common interactor of both SHIP2 and IRSp53. We presented evidence that IRSp53 phosphorylation on S366 did not influence its interaction with SHIP2 and that Mena is not necessary for the association of SHIP2 with IRSp53 in MDA-MB-231 cells. The absence of Mena in MDA-MB-231 cells decreased the intracellular content in F-actin and modified the subcellular localization of SHIP2 and IRSp53 by increasing their relative content at the plasma membrane. Together our data suggest that SHIP2, through interaction with the cell protrusion regulators IRSp53 and Mena, participate to the formation of multi-protein complexes. This ensures the appropriate modulations of PIs which is important for regulation of membrane dynamics.


Assuntos
Actinas/metabolismo , Membrana Celular/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Animais , Células COS , Movimento Celular , Extensões da Superfície Celular , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Ligação Proteica
5.
Cell Rep ; 30(11): 3821-3836.e13, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32187552

RESUMO

The C-terminal variants G1 and G2 of apolipoprotein L1 (APOL1) confer human resistance to the sleeping sickness parasite Trypanosoma rhodesiense, but they also increase the risk of kidney disease. APOL1 and APOL3 are death-promoting proteins that are partially associated with the endoplasmic reticulum and Golgi membranes. We report that in podocytes, either APOL1 C-terminal helix truncation (APOL1Δ) or APOL3 deletion (APOL3KO) induces similar actomyosin reorganization linked to the inhibition of phosphatidylinositol-4-phosphate [PI(4)P] synthesis by the Golgi PI(4)-kinase IIIB (PI4KB). Both APOL1 and APOL3 can form K+ channels, but only APOL3 exhibits Ca2+-dependent binding of high affinity to neuronal calcium sensor-1 (NCS-1), promoting NCS-1-PI4KB interaction and stimulating PI4KB activity. Alteration of the APOL1 C-terminal helix triggers APOL1 unfolding and increased binding to APOL3, affecting APOL3-NCS-1 interaction. Since the podocytes of G1 and G2 patients exhibit an APOL1Δ or APOL3KO-like phenotype, APOL1 C-terminal variants may induce kidney disease by preventing APOL3 from activating PI4KB, with consecutive actomyosin reorganization of podocytes.


Assuntos
Actomiosina/metabolismo , Apolipoproteína L1/química , Apolipoproteína L1/genética , Apolipoproteínas L/metabolismo , Nefropatias/metabolismo , Mutação/genética , Sequência de Aminoácidos , Apolipoproteína L1/urina , Cálcio/metabolismo , Linhagem Celular , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Humanos , Nefropatias/urina , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Antígenos de Histocompatibilidade Menor/metabolismo , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Neuropeptídeos/metabolismo , Fenótipo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Podócitos/ultraestrutura , Poli I-C/farmacologia , Canais de Potássio/metabolismo , Ligação Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína
6.
Adv Biol Regul ; 76: 100651, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31519471

RESUMO

Opsismodysplasia (OPS) is a rare but severe autosomal recessive skeletal chondrodysplasia caused by inactivating mutations in the Inppl1/Ship2 gene. The molecular mechanism leading from Ship2 gene inactivation to OPS is currently unknown. Here, we used our Ship2Δ/Δ mouse expressing reduced amount of a catalytically-inactive SHIP2 protein and a previously reported SHIP2 inhibitor to investigate growth plate development and mineralization in vivo, ex vivo and in vitro. First, as observed in OPS patients, catalytic inactivation of SHIP2 in mouse leads to reduced body length, shortening of long bones, craniofacial dysmorphism, reduced height of the hyperthrophic chondrocyte zone and to defects in growth plate mineralization. Second, intrinsic Ship2Δ/Δ bone defects were sufficient to induce the characteristic OPS alterations in bone growth, histology and mineralization ex vivo. Third, expression of osteocalcin was significantly increased in SHIP2-inactivated chondrocyte cultures whereas production of mineralized nodules was markedly decreased. Targeting osteocalcin mRNA with a specific shRNA increased the production of mineralized nodules. Fourth, levels of p-MEK and p-Erk1/2 were significantly increased in SHIP2-inactivated chondrocytes in response to serum and IGF-1, but not to FGF2, as compared to control chondrocytes. Treatment of chondrocytes and bones in culture with a MEK inhibitor partially rescued the production of mineralized nodules, the size of the hypertrophic chondrocyte zone and bone growth, raising the possibility of a treatment that could partially reduce the phenotype of this severe condition. Altogether, our results indicate that Ship2Δ/Δ mice represent a relevant model for human OPS. They also highlight the important role of SHIP2 in chondrocytes during endochondral ossification and its different differentiation steps. Finally, we identified a role of osteocalcin in mineralized nodules production and for the MEK-Erk1/2 signaling pathway in the OPS phenotype.


Assuntos
Condrócitos/metabolismo , MAP Quinase Quinase Quinases/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Osteocalcina/genética , Osteocondrodisplasias/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Aminoacetonitrila/análogos & derivados , Aminoacetonitrila/farmacologia , Animais , Calcificação Fisiológica/genética , Diferenciação Celular , Condrócitos/patologia , Modelos Animais de Doenças , Fator 2 de Crescimento de Fibroblastos/farmacologia , Regulação da Expressão Gênica , Lâmina de Crescimento/metabolismo , Lâmina de Crescimento/patologia , Humanos , Fator de Crescimento Insulin-Like I/farmacologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Osteocalcina/antagonistas & inibidores , Osteocalcina/metabolismo , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/patologia , Osteogênese/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/antagonistas & inibidores , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/deficiência , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Tiofenos/farmacologia
7.
Adv Biol Regul ; 75: 100660, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31628071

RESUMO

Phosphoinositides (PIs) are phosphorylated derivatives of phosphatidylinositol. They act as signaling molecules linked to essential cellular mechanisms in eukaryotic cells, such as cytoskeleton organization, mitosis, polarity, migration or invasion. PIs are phosphorylated and dephosphorylated by a large number of PI kinases and PI phosphatases acting at the 5-, 4- and 3- position of the inositol ring. PI 5-phosphatases i.e. OCRL, INPP5B, SHIP1/2, Synaptojanin 1/2, INPP5E, INPP5J, SKIP (INPP5K) are enzymes that dephosphorylate the 5-phosphate position of PIs. Several human genetic diseases such as the Lowe syndrome, some congenital muscular dystrophy and opsismodysplasia are due to mutations in PI phosphatases, resulting in loss-of-function. The PI phosphatases are also up or down regulated in several human cancers such as glioblastoma or breast cancer. Their cellular localization, that is dynamic and varies in response to stimuli, is an important issue to understand function. This is the case for two members of the PI 5-phosphatase SKIP and SHIP2. Both enzymes are in ruffles, plasma membranes, the endoplasmic reticulum, a situation that is unique for SKIP, and the nucleus. Following localization, PI 5-phosphatases act on specific cellular pools of PIs, which in turn interact with target proteins. Nuclear PIs have emerged as regulators of genome functions in different area of cell signaling. They often localize to nuclear speckles, as do several PI metabolizing kinases and phosphatases. We asked whether SKIP and SHIP2 could have an impact on nuclear PI(4,5)P2. In two glioblastoma cell models, lowering SKIP expression had an impact on nuclear PI(4,5)P2. In a model of SHIP2 deletion in MCF-7 cells, no change in nuclear PI(4,5)P2 was observed. Finally, we present evidence of an anti-tumoral role of SKIP in vivo, in xenografts using as model U87shSKIP cells.


Assuntos
Neoplasias da Mama/enzimologia , Núcleo Celular/enzimologia , Retículo Endoplasmático/enzimologia , Glioblastoma/enzimologia , Proteínas de Neoplasias/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Núcleo Celular/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/patologia , Feminino , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Monoéster Fosfórico Hidrolases/genética
8.
Oncotarget ; 10(19): 1798-1811, 2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30956759

RESUMO

Despite the introduction of tyrosine kinase inhibitors, gastrointestinal stromal tumors (GIST) resistance remains a major clinical challenge. We previously identified phosphodiesterase 3A (PDE3A) as a potential therapeutic target expressed in most GIST. The PDE3 inhibitor cilostazol reduced cell viability and synergized with the tyrosine kinase inhibitor imatinib (Gleevec™) in the imatinib-sensitive GIST882 cell line. Here, we found that cilostazol potentiated imatinib also in the imatinib-resistant GIST48 cell line. Cilostazol induced nuclear exclusion, hence inactivation, of the transcriptional co-activator YAP, in a cAMP-independent manner. Verteporfin, a YAP/TEAD interaction inhibitor, reduced by 90% the viability of both GIST882 and GIST48 cells. Our results highlight the potential use of compounds targeting PDE3A or YAP in combined multitherapy to tackle GIST resistance.

9.
FEBS J ; 286(6): 1120-1135, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30695232

RESUMO

Cell migration is an important process that occurs during development and has also been linked to the motility of cancer cells. Cytoskeleton reorganization takes place in the migration process leading to lamellipodia formation. Understanding the molecular underpinnings of cell migration is particularly important in studies of glioblastoma, a highly invasive and aggressive cancer type. Two members of the phosphoinositide 5-phosphatase family, SKIP and SHIP2, have been associated with cell migration in glioblastoma; however, the precise role these enzymes play in the process-and whether they work in concert-remains unclear. Here, we compared phosphoinositide 5-phosphatases expression in glioblastoma primary cells and cell lines and showed that SHIP2 and SKIP expression greatly varies between different cell types, while OCRL, another phosphoinositide 5-phosphatase, is constitutively expressed. Upon adhesion of U-251 MG cells to fibronectin, SHIP2, SKIP, and PI(4,5)P2 colocalized in membrane ruffles. Upregulation of PI(4,5)P2 was observed in SKIP-depleted U-251 MG cells compared to control cells, but only when cells were adhered to fibronectin. Both PTEN-deficient (U-251) and PTEN-containing (LN229) glioblastoma cells showed a decrease in cell migration velocity in response to SKIP downregulation. Moreover, a SHIP2 catalytic inhibitor lowered cell migration velocity in the U-251 MG cell line. We conclude that integrin activation in U-251 cells leads to colocalization of both SKIP and SHIP2 in ruffles, where they act as potential drivers of cell migration. Depending on their expression levels in glioblastoma, phosphoinositide 5-phosphatases could cooperate and synergize in the regulation of cell migration and adhesion.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Movimento Celular , Fibronectinas/metabolismo , Glioblastoma/patologia , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , RNA Interferente Pequeno/genética , Transdução de Sinais , Células Tumorais Cultivadas
10.
J Lipid Res ; 60(2): 276-286, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30194087

RESUMO

Phosphoinositides (PIs) are recognized as major signaling molecules in many different functions of eukaryotic cells. PIs can be dephosphorylated by multiple phosphatase activities at the 5-, 4-, and 3- positions. Human PI 5-phosphatases belong to a family of 10 members. Except for inositol polyphosphate 5-phosphatase A, they all catalyze the dephosphorylation of PI(4,5)P2 and/or PI(3,4,5)P3 at the 5- position. PI 5-phosphatases thus directly control the levels of PI(3,4,5)P3 and participate in the fine-tuning regulatory mechanisms of PI(3,4)P2 and PI(4,5)P2 Second messenger functions have been demonstrated for PI(3,4)P2 in invadopodium maturation and lamellipodia formation. PI 5-phosphatases can use several substrates on isolated enzymes, and it has been challenging to establish their real substrate in vivo. PI(4,5)P2 has multiple functions in signaling, including interacting with scaffold proteins, ion channels, and cytoskeleton proteins. PI 5-phosphatase isoenzymes have been individually implicated in human diseases, such as the oculocerebrorenal syndrome of Lowe, through mechanisms that include lipid control. Oncogenic and tumor-suppressive functions of PI 5-phosphatases have also been reported in different cell contexts. The mechanisms responsible for genetic diseases and for oncogenic or tumor-suppressive functions are not fully understood. The regulation of PI 5-phosphatases is thus crucial in understanding cell functions.


Assuntos
Células/citologia , Células/metabolismo , Doença , Fosfatidilinositóis/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Células/enzimologia , Células/patologia , Humanos , Transdução de Sinais
11.
Sci Signal ; 11(548)2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30228226

RESUMO

Sustained activation of extracellular signal-regulated kinase (ERK) drives pathologies caused by mutations in fibroblast growth factor receptors (FGFRs). We previously identified the inositol phosphatase SHIP2 (also known as INPPL1) as an FGFR-interacting protein and a target of the tyrosine kinase activities of FGFR1, FGFR3, and FGFR4. We report that loss of SHIP2 converted FGF-mediated sustained ERK activation into a transient signal and rescued cell phenotypes triggered by pathologic FGFR-ERK signaling. Mutant forms of SHIP2 lacking phosphoinositide phosphatase activity still associated with FGFRs and did not prevent FGF-induced sustained ERK activation, demonstrating that the adaptor rather than the catalytic activity of SHIP2 was required. SHIP2 recruited Src family kinases to the FGFRs, which promoted FGFR-mediated phosphorylation and assembly of protein complexes that relayed signaling to ERK. SHIP2 interacted with FGFRs, was phosphorylated by active FGFRs, and promoted FGFR-ERK signaling at the level of phosphorylation of the adaptor FRS2 and recruitment of the tyrosine phosphatase PTPN11. Thus, SHIP2 is an essential component of canonical FGF-FGFR signal transduction and a potential therapeutic target in FGFR-related disorders.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Quinases da Família src/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linhagem Celular Tumoral , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/genética , Células HEK293 , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Fosforilação , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética , Quinases da Família src/genética
12.
J Cell Sci ; 131(16)2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30012834

RESUMO

Metastasis of breast cancer cells to distant organs is responsible for ∼50% of breast cancer-related deaths in women worldwide. SHIP2 (also known as INPPL1) is a phosphoinositide 5-phosphatase for phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P3] and phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2]. Here we show, through depletion of SHIP2 in triple negative MDA-MB-231 cells and the use of SHIP2 inhibitors, that cell migration appears to be positively controlled by SHIP2. The effect of SHIP2 on migration, as observed in MDA-MB-231 cells, appears to be mediated by PI(3,4)P2. Adhesion on fibronectin is always increased in SHIP2-depleted cells. Apoptosis measured in MDA-MB-231 cells is also increased in SHIP2-depleted cells as compared to control cells. In xenograft mice, SHIP2-depleted MDA-MB-231 cells form significantly smaller tumors than those formed by control cells and less metastasis is detected in lung sections. Our data reveal a general role for SHIP2 in the control of cell migration in breast cancer cells and a second messenger role for PI(3,4)P2 in the migration mechanism. In MDA-MB-231 cells, SHIP2 has a function in apoptosis in cells incubated in vitro and in mouse tumor-derived cells, which could account for its role on tumor growth determined in vivo.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Movimento Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/antagonistas & inibidores , Animais , Movimento Celular/genética , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Adv Biol Regul ; 67: 40-48, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28916189

RESUMO

Inositol polyphosphate 5-phosphatases or phosphoinositide 5-phosphatases (PI 5-phosphatases) are enzymes that can act on soluble inositol phosphates and/or phosphoinositides (PIs). Several PI 5-phosphatases have been linked to human genetic diseases, in particular the Lowe protein or OCRL which is mutated in the Lowe syndrome. There are 10 different members of this family and 9 of them can use PIs as substrate. One of these substrates, PI(3,4,5)P3 binds to specific PH domains and recruits as effectors specific proteins to signaling complexes. Protein kinase B is one target protein and activation of the kinase will have a major impact on cell proliferation, survival and cell metabolism. Two other PIs, PI(4,5)P2 and PI(3,4)P2, are produced or used as substrates of PI 5-phosphatases (OCRL, INPP5B, SHIP1/2, SYNJ1/2, INPP5K, INPP5J, INPP5E). The inositol lipids may influence many aspects of cytoskeletal organization, lamellipodia formation and F-actin polymerization. PI 5-phosphatases have been reported to control cell migration, adhesion, polarity and cell invasion particularly in cancer cells. In glioblastoma, reducing SHIP2 expression can positively or negatively affect the speed of cell migration depending on the glioblastoma cell type. The two PI 5-phosphatases SHIP2 or SKIP could be localized at the plasma membrane and can reduce either PI(3,4,5)P3 or PI(4,5)P2 abundance. In the glioblastoma 1321 N1 cells, SHIP2 controls plasma membrane PI(4,5)P2 thereby participating in the control of cell migration.


Assuntos
Movimento Celular , Glioblastoma/metabolismo , Proteínas de Neoplasias/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositóis/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Proteínas de Neoplasias/genética , Fosfatidilinositol 4,5-Difosfato/genética , Fosfatidilinositóis/genética , Monoéster Fosfórico Hidrolases/genética , Transdução de Sinais
14.
Hum Mutat ; 38(12): 1731-1739, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28869677

RESUMO

The SH2 domain containing inositol phosphatase 2 (SHIP2) dephosphorylates PI(3,4,5)P3 to generate PI(3,4)P2, a lipid involved in the control of cell migration and adhesion. The INPPL1 gene that encodes SHIP2 has been found to be mutated in several cases of opsismodysplasia (OPS), a rare autosomal recessive chondrodysplasia characterized by growth plate defects and delayed bone maturation. Reported mutations often result in premature stop codons or missense mutations in SHIP2 catalytic domain. SHIP2 biochemical properties are known from studies in cancer cells; its role in endochondral ossification is unknown. Here, we report two novel mutations in the INPPL1 gene and show that cell migration is very much decreased in fibroblasts derived from three OPS patients as compared with control individuals. In contrast, cell adhesion on fibronectin is increased in OPS fibroblasts. An inhibitory effect on migration was also observed when normal fibroblasts were incubated in the presence of a SHIP2 competitive inhibitor. We conclude that both migration and adhesion are very much disrupted in OPS-derived fibroblasts. It is suggested that signaling events linked to migration and particularly to adhesion, which are lost in OPS patients, would prevent normal endochondral ossification.


Assuntos
Adesão Celular/genética , Movimento Celular/genética , Osteocondrodisplasias/enzimologia , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Transdução de Sinais , Códon sem Sentido , Feminino , Fibroblastos/metabolismo , Genes Reporter , Homozigoto , Humanos , Osteocondrodisplasias/diagnóstico por imagem , Osteocondrodisplasias/genética , Fenótipo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Gravidez
15.
Oncotarget ; 8(25): 41026-41043, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28454120

RESUMO

We previously identified phosphodiesterase 3A (PDE3A) as a marker for interstitial cells of Cajal (ICC) in adult mouse gut. However, PDE3A expression and function during gut development and in ICC-derived gastrointestinal stromal tumors (GIST) remained unknown. Here we found that PDE3A was expressed throughout ICC development and that ICC density was halved in PDE3A-deficient mice. In the human imatinib-sensitive GIST882 cell line, the PDE3 inhibitor cilostazol halved cell viability (IC50 0.35 µM) and this effect synergized with imatinib (Chou-Talalay's CI50 0.15). Recently the compound 6-(4-(diethylamino)-3-nitrophenyl)-5-methyl-4,5-dihydropyridazin-3(2H)-one, or DNMDP was found to be cytotoxic selectively for cells expressing both PDE3A and Schlafen12 (SLFN12) (de Waal L et al. Nat Chem Bio 2016), identifying a new, non-catalytic, role for PDE3A. 108 out of 117 (92%) of our human GIST samples displayed both PDE3A and SLFN12 immunoreactivity. GIST882 cells express both PDE3A and SLFN12 and DNMDP decreased their viability by 90%. Our results suggest a role for PDE3A during ICC development and open novel perspectives for PDE3A in targeted GIST therapy, on one hand by the synergism between imatinib and cilostazol, a PDE3 inhibitor already in clinical use for other indications, and, on the other hand, by the neomorphic, druggable, PDE3A-SLFN12 cytotoxic interplay.


Assuntos
Biomarcadores Tumorais/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Tumores do Estroma Gastrointestinal/metabolismo , Células Intersticiais de Cajal/metabolismo , Idoso , Animais , Antineoplásicos/farmacologia , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Cilostazol , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Sinergismo Farmacológico , Feminino , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/genética , Células HEK293 , Humanos , Mesilato de Imatinib/farmacologia , Células Intersticiais de Cajal/efeitos dos fármacos , Masculino , Camundongos da Linhagem 129 , Camundongos Knockout , Pessoa de Meia-Idade , Inibidores da Fosfodiesterase 3/farmacologia , Piridazinas/farmacologia , Tetrazóis/farmacologia
16.
Chembiochem ; 18(3): 233-247, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27907247

RESUMO

SHIP2 is a phosphatase that acts at the 5-position of phosphatidylinositol 3,4,5-trisphosphate. It is one of several enzymes that catalyse dephosphorylation at the 5-position of phosphoinositides or inositol phosphates. SHIP2 has a confirmed role in opsismodysplasia, a disease of bone development, but also interacts with proteins involved in insulin signalling, cytoskeletal function (thus having an impact on endocytosis, adhesion, proliferation and apoptosis) and immune system function. The structure of three domains (constituting about 38 % of the protein) is known. Inhibitors of SHIP2 activity have been designed to interact with the catalytic domain with sub-micromolar IC50 values: these come from a range of structural classes and have been shown to have in vivo effects consistent with SHIP2 inhibition. Much remains unknown about the roles of SHIP2, and possible future directions for research are indicated.


Assuntos
Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Sítios de Ligação , Domínio Catalítico , Humanos , Sistema Imunitário/metabolismo , Insulina/metabolismo , Ligantes , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/patologia , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/antagonistas & inibidores , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/química , Transdução de Sinais
17.
Oncotarget ; 7(51): 84118-84127, 2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-27563828

RESUMO

In previous studies, we have reported that phospholipase C (PLC)-ß1 plays a crucial role in myogenic differentiation and we determined the importance of its catalytic activity for the initiation of this process. Here we define the effectors that take part to its signaling pathway. We show that the Inositol Polyphosphate Multikinase (IPMK) is able to promote myogenic differentiation since its overexpression determines the up-regulation of several myogenic markers. Moreover, we demonstrate that IPMK activates the same cyclin D3 promoter region targeted by PLC-ß1 and that IPMK-induced promoter activation relies upon c-jun binding to the promoter, as we have shown previously for PLC-ß1. Furthermore, our data shows that IPMK overexpression causes an increase in ß-catenin translocation and accumulation to the nuclei of differentiating myoblasts resulting in higher MyoD activation. Finally, we describe that PLC-ß1 overexpression determines too an increase in ß-catenin translocation and that PLC-ß1, IPMK and ß-catenin are mediators of the same signaling pathway since their overexpression results in cyclin D3 and myosin heavy chain (MYH) induction.


Assuntos
Diferenciação Celular , Fosfolipase C beta/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , beta Catenina/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Western Blotting , Linhagem Celular , Núcleo Celular/metabolismo , Ciclina D3/genética , Camundongos , Desenvolvimento Muscular/genética , Fosfolipase C beta/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Regiões Promotoras Genéticas/genética , Transdução de Sinais/genética , Ativação Transcricional , beta Catenina/genética
18.
Biochem Biophys Res Commun ; 476(4): 508-514, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27246739

RESUMO

The phosphoinositide 5-phosphatases consist of several enzymes that have been shown to modulate cell migration and invasion. SHIP2, one family member, is known to interact with growth factor receptors and cytoskeletal proteins. In a human model of glioblastoma 1321 N1 cells, we recently identified Myo1c as a new interactor of SHIP2. This was shown in a complex of proteins also containing filamin A. We show here that SHIP2 localization at lamellipodia and ruffles is impaired in Myo1c depleted cells. In the absence of Myo1c, N1 cells tend to associate to form clusters. Cell migration is very much reduced in Myo1c depleted cells, concomitantly with a decrease in FAK Tyr397 phosphorylation, focal adhesion length and PI(4,5)P2 immunostaining. In N1 cells, Myo1c is thus important for lamellipodia formation to assemble a protein complex containing SHIP2 to facilitate cell migration.


Assuntos
Movimento Celular/fisiologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Miosina Tipo I/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Linhagem Celular Tumoral , Polaridade Celular , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Imuno-Histoquímica , Miosina Tipo I/antagonistas & inibidores , Miosina Tipo I/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Pseudópodes/metabolismo , RNA Interferente Pequeno/genética
19.
Adv Biol Regul ; 62: 1-10, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27036498

RESUMO

Inositol 1,4,5-trisphosphate 3-kinase C (ITPKC) is the last identified member of the inositol 1,4,5-trisphosphate 3-kinases family which phosphorylates inositol 1,4,5-trisphosphate into inositol 1,3,4,5-tetrakisphosphate. Although expression and function of the two other family members ITPKA and ITPKB are rather well characterized, similar information is lacking for ITPKC. Here, we first defined the expression of Itpkc mRNA and protein in mouse tissues and cells using in situ hybridization and new antibodies. Surprisingly, we found that cells positive for ITPKC in the studied tissues express either a multicilium (tracheal and bronchial epithelia, brain ependymal cells), microvilli forming a brush border (small and large intestine, and kidney proximal tubule cells) or a flagellum (spermatozoa), suggesting a role for ITPKC either in the development or the function of these specialized cellular structures. Given this surprising expression, we then analyzed ITPKC function in multiciliated tracheal epithelial cells and sperm cells using our Itpkc knock-out mouse model. Unfortunately, no significant difference was observed between control and mutant mice for any of the parameters tested, leaving the exact in vivo function of this third Ins(1,4,5)P3 3-kinase still open.


Assuntos
Cílios/enzimologia , Células Epiteliais/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , RNA Mensageiro/genética , Mucosa Respiratória/enzimologia , Sequência de Aminoácidos , Animais , Encéfalo/enzimologia , Cílios/ultraestrutura , Células Epiteliais/citologia , Expressão Gênica , Hibridização In Situ , Inositol 1,4,5-Trifosfato/metabolismo , Fosfatos de Inositol/metabolismo , Intestino Grosso/enzimologia , Intestino Delgado/enzimologia , Túbulos Renais Proximais/enzimologia , Masculino , Camundongos , Camundongos Knockout , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Cultura Primária de Células , RNA Mensageiro/metabolismo , Mucosa Respiratória/citologia , Espermatozoides/enzimologia
20.
Curr Pharm Des ; 22(16): 2309-14, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26916021

RESUMO

Inositol polyphosphate 5-phosphatases act on inositol phosphates and phosphoinositides as substrates. They are 10 different isoenzymes and several splice variants in the human genome that are involved in a series of human pathologies such as the Lowe syndrome, the Joubert and MORM syndromes, breast cancer, glioblastoma, gastric cancer and several other type of cancers. Inositol 5-phosphatases can be amplified in human cancer cells, whereas the 3- and 4- phosphatase tumor suppressor PTEN and INPP4B, repectively are often repressed or deleted. The inositol 5-phosphatases are critically involved in a complex network of higly regulated phosphoinositides, affecting the lipid content of PI(3, 4, 5)P3, PI(4, 5)P2 and PI(3, 4)P2. This has an impact on the normal behavior of many intracellular target proteins e.g. protein kinase B (PKB/Akt) or actin binding proteins and final biological responses. The production of PI(3, 4P)2 by dephosphorylation of the substrate PI(3, 4, 5)P3 is particularly important as it produces a new signal messenger in the control of cell migration, invasion and endocytosis. New inhibitors/activators of inositol 5- phosphatases have recently been identified for the possible control of their activity in several human pathologies such as inflamation and cancer.


Assuntos
Inositol Polifosfato 5-Fosfatases/metabolismo , Neoplasias/metabolismo , Animais , Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Humanos , Inositol Polifosfato 5-Fosfatases/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA