Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Death Differ ; 30(2): 589-604, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36624264

RESUMO

Kinase signaling in the tiered activation of inflammasomes and associated pyroptosis is a prime therapeutic target for inflammatory diseases. While MAPKs subsume pivotal roles during inflammasome priming, specifically the MAP3K7/JNK1/NLRP3 licensing axis, their involvement in successive steps of inflammasome activation is poorly defined. Using live-cell MAPK biosensors to focus on the inflammasome triggering event allowed us to identify a subsequent process of biphasic JNK activation. We find that this biphasic post-trigger JNK signaling initially facilitates the mitochondrial reactive oxygen species generation needed to support core inflammasome formation, then supports the gasdermin-mediated cell permeation required for release of active IL-1ß from human macrophages. We further identify and characterize a xanthine oxidase-ROS activated MAP3K5/JNK2 substrate licensing complex as a novel regulator of the GSDMD mobilization which precedes pyroptosis. We show that inhibitors targeting this MAP3K5 cascade alleviate morbidity in mouse models of colitis and dampen both augmented IL-1ß release and cell permeation in monocytes derived from patients with gain-of-function inflammasomopathies.


Assuntos
Inflamassomos , Piroptose , Animais , Humanos , Camundongos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/fisiologia , Transdução de Sinais
2.
Sci Signal ; 14(694)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344832

RESUMO

Noncanonical inflammasome activation by cytosolic lipopolysaccharide (LPS) is a critical component of the host response to Gram-negative bacteria. Cytosolic LPS recognition in macrophages is preceded by a Toll-like receptor (TLR) priming signal required to induce transcription of inflammasome components and facilitate the metabolic reprograming that fuels the inflammatory response. Using a genome-scale arrayed siRNA screen to find inflammasome regulators in mouse macrophages, we identified the mitochondrial enzyme nucleoside diphosphate kinase D (NDPK-D) as a regulator of both noncanonical and canonical inflammasomes. NDPK-D was required for both mitochondrial DNA synthesis and cardiolipin exposure on the mitochondrial surface in response to inflammasome priming signals mediated by TLRs, and macrophages deficient in NDPK-D had multiple defects in LPS-induced inflammasome activation. In addition, NDPK-D was required for the recruitment of TNF receptor-associated factor 6 (TRAF6) to mitochondria, which was critical for reactive oxygen species (ROS) production and the metabolic reprogramming that supported the TLR-induced gene program. NDPK-D knockout mice were protected from LPS-induced shock, consistent with decreased ROS production and attenuated glycolytic commitment during priming. Our findings suggest that, in response to microbial challenge, NDPK-D-dependent TRAF6 mitochondrial recruitment triggers an energetic fitness checkpoint required to engage and maintain the transcriptional program necessary for inflammasome activation.


Assuntos
Inflamassomos , Nucleosídeo Difosfato Quinase D , Animais , Inflamassomos/genética , Inflamassomos/metabolismo , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Camundongos , Mitocôndrias/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nucleosídeo Difosfato Quinase D/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
PLoS Pathog ; 17(3): e1009395, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33684179

RESUMO

The mammalian immune system is constantly challenged by signals from both pathogenic and non-pathogenic microbes. Many of these non-pathogenic microbes have pathogenic potential if the immune system is compromised. The importance of type I interferons (IFNs) in orchestrating innate immune responses to pathogenic microbes has become clear in recent years. However, the control of opportunistic pathogens-and especially intracellular bacteria-by type I IFNs remains less appreciated. In this study, we use the opportunistic, Gram-negative bacterial pathogen Burkholderia cenocepacia (Bc) to show that type I IFNs are capable of limiting bacterial replication in macrophages, preventing illness in immunocompetent mice. Sustained type I IFN signaling through cytosolic receptors allows for increased expression of autophagy and linear ubiquitination mediators, which slows bacterial replication. Transcriptomic analyses and in vivo studies also show that LPS stimulation does not replicate the conditions of intracellular Gram-negative bacterial infection as it pertains to type I IFN stimulation or signaling. This study highlights the importance of type I IFNs in protection against opportunistic pathogens through innate immunity, without the need for damaging inflammatory responses.


Assuntos
Infecções por Burkholderia/imunologia , Burkholderia cenocepacia/imunologia , Imunidade Inata/imunologia , Interferon Tipo I/imunologia , Macrófagos/imunologia , Animais , Citosol/imunologia , Citosol/microbiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33723037

RESUMO

The major vault protein (MVP) mediates diverse cellular responses, including cancer cell resistance to chemotherapy and protection against inflammatory responses to Pseudomonas aeruginosa Here, we report the use of photoactive probes to identify MVP as a target of the N-(3-oxo-dodecanoyl) homoserine lactone (C12), a quorum sensing signal of certain proteobacteria including P. aeruginosa. A treatment of normal and cancer cells with C12 or other N-acyl homoserine lactones (AHLs) results in rapid translocation of MVP into lipid raft (LR) membrane fractions. Like AHLs, inflammatory stimuli also induce LR-localization of MVP, but the C12 stimulation reprograms (functionalizes) bioactivity of the plasma membrane by recruiting death receptors, their apoptotic adaptors, and caspase-8 into LR. These functionalized membranes control AHL-induced signaling processes, in that MVP adjusts the protein kinase p38 pathway to attenuate programmed cell death. Since MVP is the structural core of large particles termed vaults, our findings suggest a mechanism in which MVP vaults act as sentinels that fine-tune inflammation-activated processes such as apoptotic signaling mediated by immunosurveillance cytokines including tumor necrosis factor-related apoptosis inducing ligand (TRAIL).


Assuntos
Acil-Butirolactonas/metabolismo , Apoptose , Bactérias/imunologia , Bactérias/metabolismo , Imunomodulação , Transdução de Sinais , Partículas de Ribonucleoproteínas em Forma de Abóbada/metabolismo , Fenômenos Fisiológicos Bacterianos , Cromatografia Líquida , Humanos , Vigilância Imunológica , Espectrometria de Massas , Proteômica/métodos
5.
Biochem Pharmacol ; 182: 114206, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32828805

RESUMO

The Toll-like receptor 7 (TLR7) agonist imiquimod is an antitumor and antiviral drug used for the treatment of skin indications such as basal cell carcinoma, squamous cell carcinoma, and genital warts caused by the human papilloma virus. We show that imiquimod has TLR7-independent activity in which it directly inhibits phosphodiesterase (PDE), leading to cAMP increase, PKA-mediated CREB phosphorylation and subsequent CRE-dependent reporter transcription. The activation of the cAMP pathway by imiquimod is synergistically amplified by the ß-adrenergic receptor agonist, isoproterenol. PDE inhibition is implied from cAMP measurements and CRE-reporter assays in intact RAW264.7 macrophages and HEK293T cells, and also directly demonstrated in-vitro using macrophages lysate. Moreover, molecular docking simulated the binding of imiquimod in the active site of PDE4B, enabled by the high molecular similarity between imiquimod and the adenine moiety of cAMP. As expected from the known anti-inflammatory role of cAMP inducers in stimulated macrophages, PDE inhibition by imiquimod results in reduced expression of the key pro-inflammatory cytokine TNFα, and enhanced expression of the key anti-inflammatory cytokine IL-10, compared to a different TLR7 agonist, loxoribine, as well as to the TLR4 agonist LPS. To conclude, our results indicate that the widely used inflammatory drug, imiquimod, is not only a TLR7 agonist, but also harbors a novel anti-inflammatory function as a PDE inhibitor. This off-target affects the desired therapeutic inflammatory activity of imiquimod and may be accountable for adverse side effects.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/antagonistas & inibidores , Imiquimode/farmacologia , Mediadores da Inflamação/antagonistas & inibidores , Inibidores de Fosfodiesterase/farmacologia , Receptor 7 Toll-Like/agonistas , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Adjuvantes Imunológicos/farmacologia , Animais , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Mediadores da Inflamação/metabolismo , Camundongos , Células RAW 264.7 , Receptor 7 Toll-Like/metabolismo
6.
Front Immunol ; 10: 1788, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31447835

RESUMO

Expression of the key anti-inflammatory cytokine IL-10 in lipopolysaccharide (LPS)-stimulated macrophages is mediated by a delayed autocrine/paracrine loop of type I interferons (IFN) to ensure timely attenuation of inflammation. We have previously shown that cAMP synergizes with early IL-10 expression by LPS, but is unable to amplify the late type I IFN-dependent activity. We now examined the mechanism of this synergistic transcription in mouse macrophages at the promoter level, and explored the crosstalk between type I IFN signaling and cAMP, using the ß-adrenergic receptor agonist, isoproterenol, as a cAMP inducer. We show that silencing of the type I IFN receptor enables isoproterenol to synergize with LPS also at the late phase, implying that autocrine type I IFN activity hinders synergistic augmentation of LPS-stimulated IL-10 expression by cAMP at the late phase. Furthermore, IL-10 expression in LPS-stimulated macrophages is exclusively stimulated by either IFNα or isoproterenol. We identified a set of two proximate and inter-dependent cAMP response element (CRE) sites that cooperatively regulate early IL-10 transcription in response to isoproterenol-stimulated CREB and that further synergize with a constitutive Sp1 site. At the late phase, up-regulation of Sp1 activity by LPS-stimulated type I IFN is correlated with loss of function of the CRE sites, suggesting a mechanism for the loss of synergism when LPS-stimulated macrophages switch to type I IFN-dependent IL-10 expression. This report delineates the molecular mechanism of cAMP-accelerated IL-10 transcription in LPS-stimulated murine macrophages that can limit inflammation at its onset.


Assuntos
AMP Cíclico/fisiologia , Interferon Tipo I/farmacologia , Interleucina-10/genética , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Isoproterenol/farmacologia , Macrófagos/imunologia , Camundongos , Regiões Promotoras Genéticas , Células RAW 264.7 , Elementos de Resposta/fisiologia , Fator de Transcrição Sp1/fisiologia
7.
Mediators Inflamm ; 2019: 3451461, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31148944

RESUMO

Interleukin-10 (IL-10) is a key anti-inflammatory cytokine, secreted by macrophages and other immune cells to attenuate inflammation. Autocrine type I interferons (IFNs) largely mediate the delayed expression of IL-10 by LPS-stimulated macrophages. We have previously shown that IL-10 is synergistically expressed in macrophages following a costimulus of a TLR agonist and cAMP. We now show that the cAMP pathway directly upregulates IL-10 transcription and plays an important permissive and synergistic role in early, but not late, LPS-stimulated IL-10 mRNA and protein expression in mouse macrophages and in a mouse septic shock model. Our results suggest that the loss of synergism is not due to desensitization of the cAMP inducing signal, and it is not mediated by a positive crosstalk between the cAMP and type I IFN pathways. First, cAMP elevation in LPS-treated cells decreased the secretion of type I IFN. Second, autocrine/paracrine type I IFNs induce IL-10 promoter reporter activity only additively, but not synergistically, with the cAMP pathway. IL-10 promoter reporter activity was synergistically induced by cAMP elevation in macrophages stimulated by an agonist of either TLR4, TLR2/6, or TLR7, receptors which signal via MyD88, but not by an agonist of TLR3 which signals independently of MyD88. Moreover, MyD88 knockout largely reduced the synergistic IL-10 expression, indicating that MyD88 is required for the synergism displayed by LPS with cAMP. This report delineates the temporal regulation of early cAMP-accelerated vs. late type I IFN-dependent IL-10 transcription in LPS-stimulated murine macrophages that can limit inflammation at its onset.


Assuntos
Interferon Tipo I/metabolismo , Interleucina-10/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Células RAW 264.7 , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos
8.
Dig Dis Sci ; 63(12): 3382-3397, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30196390

RESUMO

BACKGROUND AND AIMS: Concanavalin A is known to activate T cells and to cause liver injury and hepatitis, mediated in part by secretion of TNFα from macrophages. Poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors have been shown to prevent tissue damage in various animal models of inflammation. The objectives of this study were to evaluate the efficacy and mechanism of the PARP-1 inhibitor 3-aminobenzamide (3-AB) in preventing concanavalin A-induced liver damage. METHODS: We tested the in vivo effects of 3-AB on concanavalin A-treated mice, its effects on lipopolysaccharide (LPS)-stimulated macrophages in culture, and its ability to act as a scavenger in in vitro assays. RESULTS: 3-AB markedly reduced inflammation, oxidative stress, and liver tissue damage in concanavalin A-treated mice. In LPS-stimulated RAW264.7 macrophages, 3-AB inhibited NFκB transcriptional activity and subsequent expression of TNFα and iNOS and blocked NO production. In vitro, 3-AB acted as a hydrogen peroxide scavenger. The ROS scavenger N-acetylcysteine (NAC) and the ROS formation inhibitor diphenyleneiodonium (DPI) also inhibited TNFα expression in stimulated macrophages, but unlike 3-AB, NAC and DPI were unable to abolish NFκB activity. PARP-1 knockout failed to affect NFκB and TNFα suppression by 3-AB in stimulated macrophages. CONCLUSIONS: Our results suggest that 3-AB has a therapeutic effect on concanavalin A-induced liver injury by inhibiting expression of the key pro-inflammatory cytokine TNFα, via PARP-1-independent NFκB suppression and via an NFκB-independent anti-oxidative mechanism.


Assuntos
Benzamidas/farmacologia , Hepatite , Macrófagos , Doença Aguda , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Células Cultivadas , Concanavalina A/farmacologia , Modelos Animais de Doenças , Hepatite/metabolismo , Hepatite/prevenção & controle , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Camundongos , Mitógenos/farmacologia , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Resultado do Tratamento , Fator de Necrose Tumoral alfa/metabolismo
9.
Methods Mol Biol ; 1714: 67-78, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29177856

RESUMO

Nuclear factor kappa-B (NF-κB) is a key transcription factor in the regulation of the innate immune inflammatory response in activated macrophages. NF-κB functions as a homo- or hetero-dimer derived from one or more of the five members of the NF-κB family, and is activated through a well-studied process of stimulus-dependent inhibitor degradation, post-translational modification, nuclear translocation, and chromatin binding. Its activity is subject to multiple levels of feedback control through both inhibitor protein activity and direct regulation of NF-κB components. Many methods have been developed to measure and quantify NF-κB activation. In this chapter, we summarize available methods and present a protocol for image-based measurement of NF-κB activation in macrophages activated with microbial stimuli. Using either a stably expressed GFP-tagged fusion of the RelA NF-κB protein, or direct detection of endogenous RelA by immunocytochemistry, we describe data collection and analysis to quantify NF-κB cytosol to nuclear translocation in single cells using fluorescence microscopy.


Assuntos
Imuno-Histoquímica/métodos , Macrófagos/metabolismo , Microscopia de Fluorescência/métodos , NF-kappa B/metabolismo , Análise de Célula Única/métodos , Receptores Toll-Like/metabolismo , Núcleo Celular/metabolismo , Células Cultivadas , Citosol/metabolismo , Humanos , Macrófagos/citologia , Macrófagos/imunologia , Transporte Proteico
10.
Chem Commun (Camb) ; 53(27): 3842-3845, 2017 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-28317057

RESUMO

Phospho-ceramide analogue-1 (PCERA-1), a synthetic analogue of ceramide-1-phosphate (C1P), has been previously shown to act as a potent modulator of macrophage activity and inflammation. We have developed an efficient synthesis of PCERA-1 from readily available starting materials, and designed and prepared derivatives of this analogue, including a photoaffinity probe to tag and identify putative proteins that bind PCERA-1.


Assuntos
Ceramidas/farmacologia , Imunomodulação/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Sondas Moleculares/farmacologia , Animais , Ceramidas/síntese química , Ceramidas/química , Relação Dose-Resposta a Droga , Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Sondas Moleculares/síntese química , Sondas Moleculares/química , Estrutura Molecular , Processos Fotoquímicos , Células RAW 264.7 , Relação Estrutura-Atividade
11.
Immunol Lett ; 169: 73-81, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26656944

RESUMO

Inflammation is an ensemble of tightly regulated steps, in which macrophages play an essential role. Previous reports showed that the natural sphingolipid ceramide 1-phosphate (C1P) stimulates macrophages migration, while the synthetic C1P mimic, phospho-ceramide analogue-1 (PCERA-1), suppresses production of the key pro-inflammatory cytokine TNFα and amplifies production of the key anti-inflammatory cytokine IL-10 in LPS-stimulated macrophages, via one or more unidentified G-protein coupled receptors. We show that C1P stimulated RAW264.7 macrophages migration via the NFκB pathway and MCP-1 induction, while PCERA-1 neither mimicked nor antagonized these activities. Conversely, PCERA-1 synergistically elevated LPS-dependent IL-10 expression in RAW264.7 macrophages via the cAMP-PKA-CREB signaling pathway, while C1P neither mimicked nor antagonized these activities. Interestingly, both compounds have the capacity to additively inhibit TNFα secretion; PCERA-1, but not C1P, suppressed LPS-induced TNFα expression in macrophages in a CREB-dependent manner, while C1P, but not PCERA-1, directly inhibited recombinant TNFα converting enzyme (TACE). Finally, PCERA-1 failed to interfere with binding of C1P to either the cell surface receptor or to TACE. These results thus indicate that the natural sphingolipid C1P and its synthetic analog PCERA-1 bind and activate distinct receptors expressed in RAW264.7 macrophages. Identification of these receptors will be instrumental for elucidation of novel activities of extra-cellular sphingolipids, and may pave the way for the design of new sphingolipid mimics for the treatment of inflammatory diseases, and pathologies which depend on cell migration, as in metastatic tumors.


Assuntos
Ceramidas/farmacologia , Inflamação/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Proteínas ADAM/metabolismo , Proteína ADAM17 , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Sinergismo Farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/imunologia , Interleucina-10/genética , Interleucina-10/metabolismo , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Camundongos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
12.
Mol Immunol ; 47(7-8): 1396-403, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20303596

RESUMO

The role of CREB in LPS signaling is controversial. The objective of this study was to evaluate the effect of LPS on phosphorylation and transcriptional activation of CREB, in comparison to isoproterenol, a beta-adrenergic receptor agonist. We show here that LPS elevates intra-cellular cAMP level in RAW264.7 macrophages, with slower kinetics and lower magnitude than isoproterenol. The two agents stimulated CREB phosphorylation on Ser-133 to a similar extent, but with a different mechanism; rapid and mostly PKA-mediated for isoproterenol; slow and MSK1-mediated for LPS. Interestingly, LPS-stimulated phosphorylation of CREB did not result in transcriptional activation of a CRE-regulated luciferase reporter, in contrast to stimulation by isoproterenol. Furthermore, inhibitors of p38 and MSK1, but not PKA, completely blocked the production of IL-10 and TNFalpha in LPS-stimulated macrophages. Distinctively, the PKA inhibitor H89 blocked the suppressive effect of isoproterenol on TNFalpha production, as well as its stimulatory effect on IL-10 induction, in LPS-stimulated macrophages. Likewise, while over-expression of dominant negative CREB had no effect on LPS-stimulated TNFalpha production, it blocked the suppressive effect of isoproterenol on TNFalpha production in the LPS-stimulated macrophages. Our results thus indicate that PKA-mediated phosphorylation of CREB promotes TNFalpha suppression and IL-10 induction, whereas the same phosphorylation event initiated by LPS and mediated by MSK1 is non-functional for transcriptional modulation.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Interleucina-10/imunologia , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Linhagem Celular , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Interleucina-10/biossíntese , Isoproterenol/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Fosforilação , Transdução de Sinais , Transcrição Gênica , Fator de Necrose Tumoral alfa/biossíntese
13.
Mol Immunol ; 46(10): 1979-87, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19362373

RESUMO

Expression of the anti-inflammatory cytokine IL-10 can be induced either by TLR agonists such as lipopolysaccharide (LPS), or by various endogenous stimuli, in particular those acting via a cAMP-dependent signaling pathway. We have previously reported that the synthetic phospho-ceramide analogue-1 (PCERA-1) increases cAMP level and subsequently down-regulates production of TNFalpha and up-regulates production of IL-10 in LPS-stimulated macrophages. The objective of this study was to determine the mechanism of activity of PCERA-1 and the role of cAMP in LPS-induced IL-10 production. We show here that PCERA-1 induces IL-10 production in synergism with various TLR agonists in mouse RAW264.7 macrophages. Cooperativity is evident both at the mRNA and protein levels. IL-10 production by LPS and PCERA-1 is mediated by the cAMP pathway and by the p38 MAP kinase. Phosphorylation of p38 is cooperatively accomplished by LPS and PCERA-1 or other cAMP inducers. Furthermore, the activity of PCERA-1 can be partially mimicked by a cell-permeable analog of cAMP, and blocked by the protein kinase A (PKA) inhibitor H89. Finally, in the absence of PCERA-1, the residual IL-10 induction by LPS depends on the basal cAMP level as it can be largely elevated by the phosphodiesterase (PDE)-4 inhibitor rolipram. Our results thus indicate that IL-10 induction by LPS critically depends on basal cAMP level, and that a co-stimulus by a TLR agonist and a cAMP-elevating agent results in synergistic PKA-dependent and p38-dependent IL-10 production.


Assuntos
Ceramidas/farmacologia , AMP Cíclico/metabolismo , Interleucina-10/biossíntese , Lipopolissacarídeos/farmacologia , Organofosfatos/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Sinergismo Farmacológico , Ativação Enzimática/efeitos dos fármacos , Interleucina-10/genética , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Camundongos , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
14.
Immunol Lett ; 123(1): 1-8, 2009 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-19185589

RESUMO

Phospho-ceramide analog-1 (PCERA-1) has been described as a potent in vivo suppressor of the pro-inflammatory cytokine tumor necrosis factor alpha (TNFalpha), and thus as a putative drug for the treatment of inflammatory diseases. However, the in vivo cell target of PCERA-1 has not been identified, and its in vivo effect on secretion of other relevant cytokines has not been reported. We have previously shown that PCERA-1 suppresses lipopolysaccharide (LPS)-induced TNFalpha production in RAW264.7 macrophages in vitro. We therefore hypothesized that PCERA-1 targets TNFalpha production by primary macrophages. In this study we thus investigated the effect of PCERA-1 on LPS-induced release of TNFalpha, interleukin (IL)-10 and IL-12p40, in vivo, and ex vivo. We found that PCERA-1 suppressed production of the pro-inflammatory cytokines, TNFalpha and IL-12p40, and increased production of the anti-inflammatory cytokine, IL-10, in LPS-challenged mice, and in primary peritoneal macrophages as well as bone marrow-derived macrophages (BMDM) stimulated with LPS and interferon (IFN)-gamma. These activities of PCERA-1 were independent of each other. In contrast, PCREA-1 only slightly affected TNFalpha production in the whole blood assay, where LPS-induced cytokines are mainly produced by monocytes. Moreover, isolated blood monocytes were inert to PCERA-1, but acquired responsiveness to PCERA-1 upon macrophage colony stimulating factor (M-CSF)-induced differentiation into macrophages. Pharmacokinetic analysis in mice showed that while the volume of distribution of PCERA-1 is low, the drug was rapidly exchanged between the peritoneum and the systemic circulation. Together, these results suggest that sensitivity to PCERA-1 increases upon differentiation of blood monocytes into tissue macrophages, and imply a mechanistic role for peritoneal macrophages in the in vivo anti-inflammatory activity of PCERA-1. Finally, we show that the mechanism of activity of PCERA-1 and prostaglandin E2 (PGE2) is distinct, and that PCERA-1 signaling is not mediated by EP2, a PGE2 receptor which is also activated by oxidized phospholipids. The independent and reciprocal modulation of production of TNFalpha and IL-12p40, vs. IL-10, suggests that PCERA-1 may be a candidate drug for the treatment of inflammation-linked diseases.


Assuntos
Ceramidas/farmacologia , Interleucina-10/biossíntese , Subunidade p40 da Interleucina-12/biossíntese , Macrófagos/efeitos dos fármacos , Monócitos/imunologia , Fator de Necrose Tumoral alfa/biossíntese , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Dinoprostona/imunologia , Dinoprostona/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Interferon gama/farmacologia , Interleucina-10/agonistas , Subunidade p40 da Interleucina-12/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores
15.
Immunology ; 127(1): 103-15, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-18793216

RESUMO

Tight regulation of the production of the key pro-inflammatory cytokine tumour necrosis factor-alpha (TNF-alpha) is essential for the prevention of chronic inflammatory diseases. In vivo administration of a synthetic phospholipid, named hereafter phospho-ceramide analogue-1 (PCERA-1), was previously found to suppress lipopolysaccharide (LPS)-induced TNF-alpha blood levels. We therefore investigated the in vitro anti-inflammatory effects of PCERA-1. Here, we show that extracellular PCERA-1 potently suppresses production of the pro-inflammatory cytokine TNF-alpha in RAW264.7 macrophages, and in addition, independently and reciprocally regulates the production of the anti-inflammatory cytokine interleukin-10 (IL-10). Specificity is demonstrated by the inability of the phospholipids ceramide-1-phosphate (C1P), sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) to perform these activities. Similar TNF-alpha suppression and IL-10 induction by PCERA-1 were observed in macrophages when activated by Toll-like receptor 4 (TLR4), TLR2 and TLR7 agonists. Regulation of cytokine production is demonstrated at the mRNA and protein levels. Finally, we show that, while PCERA-1 does not block activation of nuclear factor (NF)-kappaB and mitogen-activated protein kinases by LPS, it elevates the intracellular cAMP level. In conclusion, the anti-inflammatory activity of PCERA-1 seems to be mediated by a cell membrane receptor, upstream of cAMP production, and eventually TNF-alpha suppression and IL-10 induction. Thus, identification of the PCERA-1 receptor may provide new pharmacological means to block inflammation.


Assuntos
Ceramidas/imunologia , Interleucina-10/biossíntese , Macrófagos/imunologia , Fator de Necrose Tumoral alfa/biossíntese , Animais , Anti-Inflamatórios/imunologia , Células Cultivadas , Regulação da Expressão Gênica/imunologia , Mediadores da Inflamação/metabolismo , Interleucina-10/genética , Lipopolissacarídeos/imunologia , Ativação de Macrófagos/imunologia , Camundongos , RNA Mensageiro/genética , Transdução de Sinais/imunologia , Receptores Toll-Like/agonistas , Receptores Toll-Like/imunologia , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA