Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nat Commun ; 15(1): 4758, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902234

RESUMO

To uncover molecular changes underlying blood-brain-barrier dysfunction in Alzheimer's disease, we performed single nucleus RNA sequencing in 24 Alzheimer's disease and control brains and focused on vascular and astrocyte clusters as main cell types of blood-brain-barrier gliovascular-unit. The majority of the vascular transcriptional changes were in pericytes. Of the vascular molecular targets predicted to interact with astrocytic ligands, SMAD3, upregulated in Alzheimer's disease pericytes, has the highest number of ligands including VEGFA, downregulated in Alzheimer's disease astrocytes. We validated these findings with external datasets comprising 4,730 pericyte and 150,664 astrocyte nuclei. Blood SMAD3 levels are associated with Alzheimer's disease-related neuroimaging outcomes. We determined inverse relationships between pericytic SMAD3 and astrocytic VEGFA in human iPSC and zebrafish models. Here, we detect vast transcriptome changes in Alzheimer's disease at the gliovascular-unit, prioritize perturbed pericytic SMAD3-astrocytic VEGFA interactions, and validate these in cross-species models to provide a molecular mechanism of blood-brain-barrier disintegrity in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Astrócitos , Barreira Hematoencefálica , Pericitos , Proteína Smad3 , Fator A de Crescimento do Endotélio Vascular , Peixe-Zebra , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Humanos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Proteína Smad3/metabolismo , Proteína Smad3/genética , Astrócitos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Pericitos/metabolismo , Pericitos/patologia , Masculino , Células-Tronco Pluripotentes Induzidas/metabolismo , Feminino , Idoso , Transcriptoma , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/irrigação sanguínea , Idoso de 80 Anos ou mais , Modelos Animais de Doenças
2.
Aging Cell ; : e14153, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38520065

RESUMO

The APOE4 allele is recognized as a significant genetic risk factor to Alzheimer's disease (AD) and influences longevity. Nonetheless, some APOE4 carriers exhibit resistance to AD even in advanced age. Humanin, a mitochondrial-derived peptide comprising 24 amino acids, has variants linked to cognitive resilience and longevity. Our research uncovered a unique humanin variant, P3S, specifically enriched in centenarians with the APOE4 allele. Through in silico analyses and subsequent experimental validation, we demonstrated a strong affinity between humanin P3S and APOE4. Utilizing an APOE4-centric mouse model of amyloidosis (APP/PS1/APOE4), we observed that humanin P3S significantly attenuated brain amyloid-beta accumulation compared to the wild-type humanin. Transcriptomic assessments of mice treated with humanin P3S highlighted its potential mechanism involving the enhancement of amyloid beta phagocytosis. Additionally, in vitro studies corroborated humanin P3S's efficacy in promoting amyloid-beta clearance. Notably, in the temporal cortex of APOE4 carriers, humanin expression is correlated with genes associated with phagocytosis. Our findings suggest a role of the rare humanin variant P3S, especially prevalent among individuals of Ashkenazi descent, in mitigating amyloid beta pathology and facilitating phagocytosis in APOE4-linked amyloidosis, underscoring its significance in longevity and cognitive health among APOE4 carriers.

3.
Acta Neuropathol ; 147(1): 9, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175301

RESUMO

Nuclear clearance and cytoplasmic accumulations of the RNA-binding protein TDP-43 are pathological hallmarks in almost all patients with amyotrophic lateral sclerosis (ALS) and up to 50% of patients with frontotemporal dementia (FTD) and Alzheimer's disease. In Alzheimer's disease, TDP-43 pathology is predominantly observed in the limbic system and correlates with cognitive decline and reduced hippocampal volume. Disruption of nuclear TDP-43 function leads to abnormal RNA splicing and incorporation of erroneous cryptic exons in numerous transcripts including Stathmin-2 (STMN2, also known as SCG10) and UNC13A, recently reported in tissues from patients with ALS and FTD. Here, we identify both STMN2 and UNC13A cryptic exons in Alzheimer's disease patients, that correlate with TDP-43 pathology burden, but not with amyloid-ß or tau deposits. We also demonstrate that processing of the STMN2 pre-mRNA is more sensitive to TDP-43 loss of function than UNC13A. In addition, full-length RNAs encoding STMN2 and UNC13A are suppressed in large RNA-seq datasets generated from Alzheimer's disease post-mortem brain tissue. Collectively, these results open exciting new avenues to use STMN2 and UNC13A as potential therapeutic targets in a broad range of neurodegenerative conditions with TDP-43 proteinopathy including Alzheimer's disease.


Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Demência Frontotemporal , Doença de Pick , Humanos , Doença de Alzheimer/genética , Proteínas de Ligação a DNA/genética , Splicing de RNA , RNA Mensageiro/genética , Estatmina/genética
4.
bioRxiv ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38076912

RESUMO

We report a highly significant correlation in brain proteome changes between Alzheimers disease (AD) and CRND8 APP695NL/F transgenic mice. However, integrating protein changes observed in the CRND8 mice with co-expression networks derived from human AD, reveals both conserved and divergent module changes. For the most highly conserved module (M42, matrisome) we find many proteins accumulate in plaques, cerebrovascular amyloid (CAA), dystrophic processes, or a combination thereof. Overexpression of two M42 proteins, midkine (Mdk) and pleiotrophin (PTN), in CRND8 mice brains leads to increased accumulation of A ß ; in plaques and in CAA; further, recombinant MDK and PTN enhance A ß ; aggregation into amyloid. Multiple M42 proteins, annotated as heparan sulfate binding proteins, bind to fibrillar A ß 42 and a non-human amyloid fibril in vitro. Supporting this binding data, MDK and PTN co-accumulate with transthyretin (TTR) amyloid in the heart and islet amyloid polypeptide (IAPP) amyloid in the pancreas. Our findings establish several critical insights. Proteomic changes in modules observed in human AD brains define an A ß ; amyloid responsome that is well conserved from mouse model to human. Further, distinct amyloid structures may serve as scaffolds, facilitating the co-accumulation of proteins with signaling functions. We hypothesize that this co-accumulation may contribute to downstream pathological sequalae. Overall, this contextualized understanding of proteomic changes and their interplay with amyloid deposition provides valuable insights into the complexity of AD pathogenesis and potential biomarkers and therapeutic targets.

5.
J Alzheimers Dis ; 90(1): 405-417, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213996

RESUMO

BACKGROUND: Dementia, vascular disease, and cancer increase with age, enabling complex comorbid interactions. Understanding vascular and cancer contributions to dementia risk and neuropathology in oldest-old may improve risk modification and outcomes. OBJECTIVE: Investigate the contributions of vascular factors and cancer to dementia and neuropathology. METHODS: Longitudinal clinicopathologic study of prospectively followed Mayo Clinic participants dying≥95 years-old who underwent autopsy. Participants were stratified by dementia status and compared according to demographics, vascular risk factors, cancer, and neuropathology. RESULTS: Participants (n = 161; 83% female; 99% non-Hispanic whites)≥95 years (95-106 years-old) with/without dementia did not differ based on demographics. APOE ɛ2 frequency was higher in no dementia (20/72 [28%]) versus dementia (11/88 [12%]; p = 0.03), but APOE ɛ4 frequency did not differ. Coronary artery disease was more frequent in no dementia (31/72 [43%]) versus dementia (23/89 [26%]; p = 0.03) associated with 56% lower dementia odds (odds ratio [OR] = 0.44 [confidence interval (CI) = 0.19-0.98]; p = 0.04) and fewer neuritic/diffuse plaques. Diabetes had an 8-fold increase in dementia odds (OR = 8.42 [CI = 1.39-163]; p = 0.02). Diabetes associated with higher cerebrovascular disease (Dickson score; p = 0.05). Cancer associated with 63% lower dementia odds (OR = 0.37 [CI = 0.17-0.78]; p < 0.01) and lower Braak stage (p = 0.01). CONCLUSION: Cancer exposure in the oldest-old was associated with lower odds of dementia and tangle pathology, whereas history of coronary artery disease was associated with lower odds of dementia and amyloid-ß plaque pathology. History of diabetes mellitus was associated with increased odds of dementia and cerebrovascular disease pathology. Cancer-related mechanisms and vascular risk factor reduction strategies may alter dementia risk and neuropathology in oldest-old.


Assuntos
Doença de Alzheimer , Transtornos Cerebrovasculares , Doença da Artéria Coronariana , Diabetes Mellitus , Neoplasias , Doenças do Sistema Nervoso , Feminino , Humanos , Idoso de 80 Anos ou mais , Masculino , Doença de Alzheimer/patologia , Neuropatologia , Placa Amiloide/patologia , Transtornos Cerebrovasculares/epidemiologia , Transtornos Cerebrovasculares/patologia , Apolipoproteínas E , Diabetes Mellitus/epidemiologia , Comorbidade , Neoplasias/epidemiologia
6.
Alzheimers Res Ther ; 14(1): 104, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35897046

RESUMO

BACKGROUND: The S209F variant of Abelson Interactor Protein 3 (ABI3) increases risk for Alzheimer's disease (AD), but little is known about its function in relation to AD pathogenesis. METHODS: Here, we use a mouse model that is deficient in Abi3 locus to study how the loss of function of Abi3 impacts two cardinal neuropathological hallmarks of AD-amyloid ß plaques and tau pathology. Our study employs extensive neuropathological and transcriptomic characterization using transgenic mouse models and adeno-associated virus-mediated gene targeting strategies. RESULTS: Analysis of bulk RNAseq data confirmed age-progressive increase in Abi3 levels in rodent models of AD-type amyloidosis and upregulation in AD patients relative to healthy controls. Using RNAscope in situ hybridization, we localized the cellular distribution of Abi3 in mouse and human brains, finding that Abi3 is expressed in both microglial and non-microglial cells. Next, we evaluated Abi3-/- mice and document that both Abi3 and its overlapping gene, Gngt2, are disrupted in these mice. Using multiple transcriptomic datasets, we show that expression of Abi3 and Gngt2 are tightly correlated in rodent models of AD and human brains, suggesting a tight co-expression relationship. RNAseq of the Abi3-Gngt2-/- mice revealed upregulation of Trem2, Plcg2, and Tyrobp, concomitant with induction of an AD-associated neurodegenerative signature, even in the absence of AD-typical neuropathology. In APP mice, loss of Abi3-Gngt2 resulted in a gene dose- and age-dependent reduction in Aß deposition. Additionally, in Abi3-Gngt2-/- mice, expression of a pro-aggregant form of human tau exacerbated tauopathy and astrocytosis. Further, using in vitro culture assays, we show that the AD-associated S209F mutation alters the extent of ABI3 phosphorylation. CONCLUSIONS: These data provide an important experimental framework for understanding the role of Abi3-Gngt2 function and early inflammatory gliosis in AD. Our studies also demonstrate that inflammatory gliosis could have opposing effects on amyloid and tau pathology, highlighting the unpredictability of targeting immune pathways in AD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Doença de Alzheimer , Amiloidose , Subunidades gama da Proteína de Ligação ao GTP , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Amiloidose/genética , Encéfalo/metabolismo , Modelos Animais de Doenças , Gliose/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/genética , Glicoproteínas de Membrana/metabolismo , Camundongos Transgênicos , Placa Amiloide/patologia , Receptores Imunológicos/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
7.
Mol Neurodegener ; 16(1): 32, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33957936

RESUMO

INTRODUCTION: Passive immunotherapies targeting Aß continue to be evaluated as Alzheimer's disease (AD) therapeutics, but there remains debate over the mechanisms by which these immunotherapies work. Besides the amount of preexisting Aß deposition and the type of deposit (compact or diffuse), there is little data concerning what factors, independent of those intrinsic to the antibody, might influence efficacy. Here we (i) explored how constitutive priming of the underlying innate activation states by Il10 and Il6 might influence passive Aß immunotherapy and (ii) evaluated transcriptomic data generated in the AMP-AD initiative to inform how these two cytokines and their receptors' mRNA levels are altered in human AD and an APP mouse model. METHODS: rAAV2/1 encoding EGFP, Il6 or Il10 were delivered by somatic brain transgenesis to neonatal (P0) TgCRND8 APP mice. Then, at 2 months of age, the mice were treated bi-weekly with a high-affinity anti-Aß1-16 mAb5 monoclonal antibody or control mouse IgG until 6 months of age. rAAV mediated transgene expression, amyloid accumulation, Aß levels and gliosis were assessed. Extensive transcriptomic data was used to evaluate the mRNA expression levels of IL10 and IL6 and their receptors in the postmortem human AD temporal cortex and in the brains of TgCRND8 mice, the later at multiple ages. RESULTS: Priming TgCRND8 mice with Il10 increases Aß loads and blocks efficacy of subsequent mAb5 passive immunotherapy, whereas priming with Il6 priming reduces Aß loads by itself and subsequent Aß immunotherapy shows only a slightly additive effect. Transcriptomic data shows that (i) there are significant increases in the mRNA levels of Il6 and Il10 receptors in the TgCRND8 mouse model and temporal cortex of humans with AD and (ii) there is a great deal of variance in individual mouse brain and the human temporal cortex of these interleukins and their receptors. CONCLUSIONS: The underlying immune activation state can markedly affect the efficacy of passive Aß immunotherapy. These results have important implications for ongoing human AD immunotherapy trials, as they indicate that underlying immune activation states within the brain, which may be highly variable, may influence the ability for passive immunotherapy to alter Aß deposition.


Assuntos
Doença de Alzheimer/imunologia , Peptídeos beta-Amiloides/antagonistas & inibidores , Anticorpos Monoclonais/farmacologia , Imunidade Inata/efeitos dos fármacos , Imunização Passiva/métodos , Animais , Humanos , Interleucina-10/imunologia , Interleucina-6/imunologia , Camundongos , Camundongos Transgênicos
8.
Epilepsy Res ; 173: 106618, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33765507

RESUMO

BACKGROUND: The pathogenesis of glioma-related seizures (GRS) is poorly understood. Here in, we aim to identify putative molecular pathways that lead to the development of GRS. METHODS: We determined brain transcriptome from intraoperative human brain tissue of patients with either GRS, glioma without seizures (non-GRS), or with idiopathic temporal lobe epilepsy (iTLE). We performed transcriptome-wide comparisons between disease groups tissue from non-epileptic controls (non-EC) to identify differentially-expressed genes (DEG). We compared DEGs to identify those that are specific or common to the groups. Through a gene ontology analysis, we identified molecular pathways enriched for genes with a Log-fold change ≥1.5 or ≤-1.5 and p-value <0.05 compared to non-EC. RESULTS: We identified 110 DEGs that are associated with GRS vs. non-GRS: 80 genes showed high and 30 low expression in GRS. There was significant overexpression of genes involved in cell-to-cell and glutamatergic signaling (CELF4, SLC17A7, and CAMK2A) and down-regulation of genes involved immune-trafficking (CXCL8, H19, and VEGFA). In the iTLE vs GRS analysis, there were 1098 DEGs: 786 genes were overexpressed and 312 genes were underexpressed in the GRS samples. There was significant enrichment for genes considered markers of oncogenesis (GSC, MYBL2, and TOP2A). Further, there was down-regulation of genes involved in the glutamatergic neurotransmission (vesicular glutamate transporter-2) in the GRS vs. iTLE samples. CONCLUSIONS: We identified a number of altered processes such as cell-to-cell signaling and interaction, inflammation-related, and glutamatergic neurotransmission in the pathogenesis of GRS. Our findings offer a new landscape of targets to further study in the fields of brain tumors and seizures.


Assuntos
Glioma , Convulsões , Transcriptoma , Encéfalo/patologia , Biologia Computacional , Perfilação da Expressão Gênica , Glioma/complicações , Glioma/genética , Glioma/cirurgia , Humanos , Convulsões/etiologia , Convulsões/genética
9.
Alzheimers Dement ; 17(6): 984-1004, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33480174

RESUMO

Intron retention (IR) has been implicated in the pathogenesis of complex diseases such as cancers; its association with Alzheimer's disease (AD) remains unexplored. We performed genome-wide analysis of IR through integrating genetic, transcriptomic, and proteomic data of AD subjects and mouse models from the Accelerating Medicines Partnership-Alzheimer's Disease project. We identified 4535 and 4086 IR events in 2173 human and 1736 mouse genes, respectively. Quantitation of IR enabled the identification of differentially expressed genes that conventional exon-level approaches did not reveal. There were significant correlations of intron expression within innate immune genes, like HMBOX1, with AD in humans. Peptides with a high probability of translation from intron-retained mRNAs were identified using mass spectrometry. Further, we established AD-specific intron expression Quantitative Trait Loci, and identified splicing-related genes that may regulate IR. Our analysis provides a novel resource for the search for new AD biomarkers and pathological mechanisms.


Assuntos
Doença de Alzheimer , Autopsia , Encéfalo/patologia , Modelos Animais de Doenças , Genômica , Íntrons/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Proteômica , Locos de Características Quantitativas , Transcriptoma
10.
J Alzheimers Dis ; 79(1): 323-334, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33252078

RESUMO

BACKGROUND/OBJECTIVE: The aim of this study was to determine if plasma concentrations of 5 surrogate markers of Alzheimer's disease (AD) pathology and neuroinflammation are associated with disease status in African Americans. METHODS: We evaluated 321 African Americans (159 AD, 162 controls) from the Florida Consortium for African-American Alzheimer's Disease Studies (FCA3DS). Five plasma proteins reflecting AD neuropathology or inflammation (Aß42, tau, IL6, IL10, TNFα) were tested for associations with AD, age, sex, APOE and MAPT genotypes, and for pairwise correlations. RESULTS: Plasma tau levels were higher in AD when adjusted for biological and technical covariates. APOEɛ4 was associated with lower plasma Aß42 and tau levels. Older age was associated with higher plasma Aß42, tau, and TNFα. Females had lower IL10 levels. Inflammatory proteins had strong pairwise correlations amongst themselves and with Aß42. CONCLUSION: We identified effects of demographic and genetic variants on five potential plasma biomarkers in African Americans. Plasma inflammatory biomarkers and Aß42 may reflect correlated pathologies and elevated plasma tau may be a biomarker of AD in this population.


Assuntos
Doença de Alzheimer/sangue , Peptídeos beta-Amiloides/sangue , Negro ou Afro-Americano , Interleucina-10/sangue , Interleucina-6/sangue , Fragmentos de Peptídeos/sangue , Fator de Necrose Tumoral alfa/sangue , Proteínas tau/sangue , Idoso , Idoso de 80 Anos ou mais , Apolipoproteínas E/genética , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas tau/genética
11.
Neurobiol Aging ; 72: 188.e3-188.e12, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30201328

RESUMO

Systematic epistasis analyses in multifactorial disorders are an important step to better characterize complex genetic risk structures. We conducted a hypothesis-free sex-stratified genome-wide screening for epistasis contributing to Alzheimer's disease (AD) susceptibility. We identified a statistical epistasis signal between the single nucleotide polymorphisms rs3733980 and rs7175766 that was associated with AD in males (genome-wide significant pBonferroni-corrected=0.0165). This signal pointed toward the genes WW and C2 domain containing 1, aka KIBRA; 5q34 and TLN2 (talin 2; 15q22.2). Gene-based meta-analysis in 3 independent consortium data sets confirmed the identified interaction: the most significant (pmeta-Bonferroni-corrected=9.02*10-3) was for the single nucleotide polymorphism pair rs1477307 and rs4077746. In functional studies, WW and C2 domain containing 1, aka KIBRA and TLN2 coexpressed in the temporal cortex brain tissue of AD subjects (ß=0.17, 95% CI 0.04 to 0.30, p=0.01); modulated Tau toxicity in Drosophila eye experiments; colocalized in brain tissue cells, N2a neuroblastoma, and HeLa cell lines; and coimmunoprecipitated both in brain tissue and HEK293 cells. Our finding points toward new AD-related pathways and provides clues toward novel medical targets for the cure of AD.


Assuntos
Doença de Alzheimer/genética , Epistasia Genética/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosfoproteínas/genética , Caracteres Sexuais , Talina/genética , Estudos de Coortes , Feminino , Humanos , Masculino , Metanálise como Assunto , Fatores Sexuais
12.
Alzheimers Res Ther ; 10(1): 22, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29458411

RESUMO

BACKGROUND: Simultaneous consideration of two neuropathological traits related to Alzheimer's disease (AD) has not been attempted in a genome-wide association study. METHODS: We conducted genome-wide pleiotropy analyses using association summary statistics from the Beecham et al. study (PLoS Genet 10:e1004606, 2014) for AD-related neuropathological traits, including neuritic plaque (NP), neurofibrillary tangle (NFT), and cerebral amyloid angiopathy (CAA). Significant findings were further examined by expression quantitative trait locus and differentially expressed gene analyses in AD vs. control brains using gene expression data. RESULTS: Genome-wide significant pleiotropic associations were observed for the joint model of NP and NFT (NP + NFT) with the single-nucleotide polymorphism (SNP) rs34487851 upstream of C2orf40 (alias ECRG4, P = 2.4 × 10-8) and for the joint model of NFT and CAA (NFT + CAA) with the HDAC9 SNP rs79524815 (P = 1.1 × 10-8). Gene-based testing revealed study-wide significant associations (P ≤ 2.0 × 10-6) for the NFT + CAA outcome with adjacent genes TRAPPC12, TRAPPC12-AS1, and ADI1. Risk alleles of proxy SNPs for rs79524815 were associated with significantly lower expression of HDAC9 in the brain (P = 3.0 × 10-3), and HDAC9 was significantly downregulated in subjects with AD compared with control subjects in the prefrontal (P = 7.9 × 10-3) and visual (P = 5.6 × 10-4) cortices. CONCLUSIONS: Our findings suggest that pleiotropy analysis is a useful approach to identifying novel genetic associations with complex diseases and their endophenotypes. Functional studies are needed to determine whether ECRG4 or HDAC9 is plausible as a therapeutic target.


Assuntos
Doença de Alzheimer , Pleiotropia Genética , Histona Desacetilases/genética , Proteínas de Neoplasias/genética , Emaranhados Neurofibrilares/patologia , Polimorfismo de Nucleotídeo Único/genética , Proteínas Repressoras/genética , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Angiopatia Amiloide Cerebral/complicações , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Metanálise como Assunto , Placa Amiloide/complicações , Proteínas Supressoras de Tumor
13.
Genome Med ; 9(1): 100, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29183403

RESUMO

BACKGROUND: While age and the APOE ε4 allele are major risk factors for Alzheimer's disease (AD), a small percentage of individuals with these risk factors exhibit AD resilience by living well beyond 75 years of age without any clinical symptoms of cognitive decline. METHODS: We used over 200 "AD resilient" individuals and an innovative, pedigree-based approach to identify genetic variants that segregate with AD resilience. First, we performed linkage analyses in pedigrees with resilient individuals and a statistical excess of AD deaths. Second, we used whole genome sequences to identify candidate SNPs in significant linkage regions. Third, we replicated SNPs from the linkage peaks that reduced risk for AD in an independent dataset and in a gene-based test. Finally, we experimentally characterized replicated SNPs. RESULTS: Rs142787485 in RAB10 confers significant protection against AD (p value = 0.0184, odds ratio = 0.5853). Moreover, we replicated this association in an independent series of unrelated individuals (p value = 0.028, odds ratio = 0.69) and used a gene-based test to confirm a role for RAB10 variants in modifying AD risk (p value = 0.002). Experimentally, we demonstrated that knockdown of RAB10 resulted in a significant decrease in Aß42 (p value = 0.0003) and in the Aß42/Aß40 ratio (p value = 0.0001) in neuroblastoma cells. We also found that RAB10 expression is significantly elevated in human AD brains (p value = 0.04). CONCLUSIONS: Our results suggest that RAB10 could be a promising therapeutic target for AD prevention. In addition, our gene discovery approach can be expanded and adapted to other phenotypes, thus serving as a model for future efforts to identify rare variants for AD and other complex human diseases.


Assuntos
Doença de Alzheimer/genética , Proteínas rab de Ligação ao GTP/genética , Idoso de 80 Anos ou mais , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Feminino , Expressão Gênica , Predisposição Genética para Doença , Humanos , Masculino , Camundongos , Proteínas Monoméricas de Ligação ao GTP/genética , Polimorfismo de Nucleotídeo Único
14.
Alzheimers Dement ; 13(10): 1133-1142, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28242297

RESUMO

INTRODUCTION: We sought to determine whether a systems biology approach may identify novel late-onset Alzheimer's disease (LOAD) loci. METHODS: We performed gene-wide association analyses and integrated results with human protein-protein interaction data using network analyses. We performed functional validation on novel genes using a transgenic Caenorhabditis elegans Aß proteotoxicity model and evaluated novel genes using brain expression data from people with LOAD and other neurodegenerative conditions. RESULTS: We identified 13 novel candidate LOAD genes outside chromosome 19. Of those, RNA interference knockdowns of the C. elegans orthologs of UBC, NDUFS3, EGR1, and ATP5H were associated with Aß toxicity, and NDUFS3, SLC25A11, ATP5H, and APP were differentially expressed in the temporal cortex. DISCUSSION: Network analyses identified novel LOAD candidate genes. We demonstrated a functional role for four of these in a C. elegans model and found enrichment of differentially expressed genes in the temporal cortex.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Biologia de Sistemas , Lobo Temporal/metabolismo , Doença de Alzheimer/induzido quimicamente , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Animais Geneticamente Modificados , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Caenorhabditis elegans/genética , Modelos Animais de Doenças , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Humanos , Masculino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Translocases Mitocondriais de ADP e ATP/genética , Translocases Mitocondriais de ADP e ATP/metabolismo , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Mapas de Interação de Proteínas , Interferência de RNA/fisiologia
15.
Neurol Genet ; 3(1): e126, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28097223

RESUMO

OBJECTIVE: To investigate and characterize putative "loss-of-function" (LOF) adenosine triphosphate-binding cassette, subfamily A member 7 (ABCA7) mutations reported to associate with Alzheimer disease (AD) risk. METHODS: We genotyped 6 previously reported ABCA7 putative LOF variants in 1,465 participants with AD, 381 participants with other neuropathologies (non-AD), and 1,043 controls and assessed the overall mutational burden for association with different diagnosis groups. We measured brain ABCA7 protein and messenger RNA (mRNA) levels using Western blot and quantitative PCR, respectively, in 11 carriers of the 3 most common variants, and sequenced all 47 ABCA7 exons in these participants to screen for other coding variants. RESULTS: At least one of the investigated variants was identified in 45 participants with late-onset Alzheimer disease, 12 participants with other neuropathologies, and 11 elderly controls. Association analysis revealed a significantly higher burden of these variants in participants with AD (p = 5.00E-04) and those with other neuropathologies (p = 8.60E-03) when compared with controls. Concurrent analysis of brain ABCA7 mRNA and protein revealed lower protein but not mRNA in p.L1403fs carriers, lower mRNA but not protein in p.E709fs carriers, and additional deleterious mutations in some c.5570+5G>C carriers. CONCLUSIONS: Our results suggest that LOF may not be a common mechanism for these ABCA7 variants and expand the list of neurologic diseases enriched for them.

16.
Alzheimers Dement ; 13(2): 119-129, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27770636

RESUMO

INTRODUCTION: African Americans' (AAs) late-onset Alzheimer's disease (LOAD) genetic risk profile is incompletely understood. Including clinical covariates in genetic analyses using informed conditioning might improve study power. METHODS: We conducted a genome-wide association study (GWAS) in AAs employing informed conditioning in 1825 LOAD cases and 3784 cognitively normal controls. We derived a posterior liability conditioned on age, sex, diabetes status, current smoking status, educational attainment, and affection status, with parameters informed by external prevalence information. We assessed association between the posterior liability and a genome-wide set of single-nucleotide polymorphisms (SNPs), controlling for APOE and ABCA7, identified previously in a LOAD GWAS of AAs. RESULTS: Two SNPs at novel loci, rs112404845 (P = 3.8 × 10-8), upstream of COBL, and rs16961023 (P = 4.6 × 10-8), downstream of SLC10A2, obtained genome-wide significant evidence of association with the posterior liability. DISCUSSION: An informed conditioning approach can detect LOAD genetic associations in AAs not identified by traditional GWAS.


Assuntos
Doença de Alzheimer/etnologia , Doença de Alzheimer/genética , Negro ou Afro-Americano/genética , Loci Gênicos , Proteínas dos Microfilamentos/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Polimorfismo de Nucleotídeo Único , Simportadores/genética , Transportadores de Cassetes de Ligação de ATP/genética , Idoso , Idoso de 80 Anos ou mais , Apolipoproteínas E/genética , Complicações do Diabetes/etnologia , Complicações do Diabetes/genética , Escolaridade , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Prevalência , Fumar/etnologia , Fumar/genética
17.
Nat Neurosci ; 17(9): 1156-63, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25129075

RESUMO

We used a collection of 708 prospectively collected autopsied brains to assess the methylation state of the brain's DNA in relation to Alzheimer's disease (AD). We found that the level of methylation at 71 of the 415,848 interrogated CpGs was significantly associated with the burden of AD pathology, including CpGs in the ABCA7 and BIN1 regions, which harbor known AD susceptibility variants. We validated 11 of the differentially methylated regions in an independent set of 117 subjects. Furthermore, we functionally validated these CpG associations and identified the nearby genes whose RNA expression was altered in AD: ANK1, CDH23, DIP2A, RHBDF2, RPL13, SERPINF1 and SERPINF2. Our analyses suggest that these DNA methylation changes may have a role in the onset of AD given that we observed them in presymptomatic subjects and that six of the validated genes connect to a known AD susceptibility gene network.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Anquirinas/genética , Proteínas de Transporte/genética , Metilação de DNA/genética , Proteínas Nucleares/genética , Proteínas Supressoras de Tumor/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/epidemiologia , Amiloidose/epidemiologia , Amiloidose/genética , Amiloidose/patologia , Encéfalo/patologia , Encéfalo/fisiologia , Ilhas de CpG/genética , Feminino , Predisposição Genética para Doença/epidemiologia , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Pessoa de Meia-Idade , Mapas de Interação de Proteínas
18.
PLoS One ; 8(6): e64164, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23750206

RESUMO

Leucine rich repeat transmembrane protein 3 (LRRTM3) is member of a synaptic protein family. LRRTM3 is a nested gene within α-T catenin (CTNNA3) and resides at the linkage peak for late-onset Alzheimer's disease (LOAD) risk and plasma amyloid ß (Aß) levels. In-vitro knock-down of LRRTM3 was previously shown to decrease secreted Aß, although the mechanism of this is unclear. In SH-SY5Y cells overexpressing APP and transiently transfected with LRRTM3 alone or with BACE1, we showed that LRRTM3 co-localizes with both APP and BACE1 in early endosomes, where BACE1 processing of APP occurs. Additionally, LRRTM3 co-localizes with APP in primary neuronal cultures from Tg2576 mice transduced with LRRTM3-expressing adeno-associated virus. Moreover, LRRTM3 co-immunoprecipitates with both endogenous APP and overexpressed BACE1, in HEK293T cells transfected with LRRTM3. SH-SY5Y cells with knock-down of LRRTM3 had lower BACE1 and higher CTNNA3 mRNA levels, but no change in APP. Brain mRNA levels of LRRTM3 showed significant correlations with BACE1, CTNNA3 and APP in ∼400 humans, but not in LRRTM3 knock-out mice. Finally, we assessed 69 single nucleotide polymorphisms (SNPs) within and flanking LRRTM3 in 1,567 LOADs and 2,082 controls and identified 8 SNPs within a linkage disequilibrium block encompassing 5'UTR-Intron 1 of LRRTM3 that formed multilocus genotypes (MLG) with suggestive global association with LOAD risk (p = 0.06), and significant individual MLGs. These 8 SNPs were genotyped in an independent series (1,258 LOADs and 718 controls) and had significant global and individual MLG associations in the combined dataset (p = 0.02-0.05). Collectively, these results suggest that protein interactions between LRRTM3, APP and BACE1, as well as complex associations between mRNA levels of LRRTM3, CTNNA3, APP and BACE1 in humans might influence APP metabolism and ultimately risk of AD.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Polimorfismo de Nucleotídeo Único , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/genética , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Loci Gênicos/genética , Predisposição Genética para Doença/genética , Humanos , Espaço Intracelular/metabolismo , Proteínas de Membrana/deficiência , Camundongos , Proteínas do Tecido Nervoso/deficiência , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA