Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2679: 141-150, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37300613

RESUMO

The emergence of enabling technologies for the analysis of circulating tumor cells has been shedding new lights into cancer management in the recent years. However, majority of the technologies developed suffer from excessive cost, time-consuming workflows, and reliance on specialized equipment and operators. Herein, we propose a simple workflow for the isolation and characterization of single circulating tumor cells using microfluidic devices. The entire process can be operated by a laboratory technician without relying on any microfluidic expertise and can be completed within few hours of sample collection.


Assuntos
Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Humanos , Microfluídica , Células Neoplásicas Circulantes/patologia , Dispositivos Lab-On-A-Chip , Fluxo de Trabalho , Linhagem Celular Tumoral , Separação Celular
2.
Mol Cell Biochem ; 478(1): 23-37, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35708866

RESUMO

Liver cancer is the sixth common cancer and forth cause of cancer-related death worldwide. Based on usually advanced stages of hepatocellular carcinoma (HCC) at the time of diagnosis, therapeutic options are limited and, in many cases, not effective, and typically result in the tumor recurrence with a poor prognosis. Radioimmunotherapy (RIT) offers a selective internal radiation therapy approach using beta or alpha emitting radionuclides conjugated with tumor-specific monoclonal antibodies (mAbs), or specific selective peptides. When compared to chemotherapy or radiotherapy, radiolabeled mAbs against cancer-associated antigens could provide a high therapeutic and exclusive radiation dose for cancerous cells while decreasing the exposure-induced side effects to healthy tissues. The recent advances in cancer immunotherapy, such as blockade of immune-checkpoint inhibitors (ICIs), has changed the landscape of cancer therapy, and the efficacy of different classes of immunotherapy has been tested in many clinical trials. Taking into account the use of ICIs in the liver tumor microenvironment, combined therapies with different approaches may enhance the outcome in the future clinical studies. With the development of novel immunotherapy treatment options in the recent years, there has been a great deal of information about combining the diverse treatment modalities to boost the effectiveness of immunomodulatory drugs. In this opinion review, we will discuss the recent advancements in RIT. The current status of immunotherapy and internal radiotherapy will be updated, and we will propose novel approaches for the combination of both techniques. Potential target antigens for radioimmunotherapy in Hepatocellular carcinoma (HCC). HCC radioimmunotherapy target antigens are the most specific and commonly accessible antigens on the surface of HCC cells. CTLA-4 ligand and receptor, TAMs, PD-1/PD-L, TIM-3, specific IEXs/TEXs, ROBO1, and cluster of differentiation antigens CD105, CD147 could all be used in HCC radioimmunotherapy. Abbreviations: TAMs, tumor-associated macrophages; CTLA-4, cytotoxic T-lymphocyte associated antigen-4; PD-1, Programmed cell death protein 1; PD-L, programmed death-ligand1; TIM-3, T-cell immunoglobulin (Ig) and mucin-domain containing protein-3; IEXs, immune cell-derived exosomes; TEXs, tumor-derived exosomes.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/radioterapia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/metabolismo , Antígeno CTLA-4 , Receptor de Morte Celular Programada 1/metabolismo , Receptor Celular 2 do Vírus da Hepatite A , Radioimunoterapia , Proteínas do Tecido Nervoso , Receptores Imunológicos , Imunoterapia/métodos , Microambiente Tumoral
3.
Stem Cells Int ; 2022: 1850305, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36132168

RESUMO

Background: A growing number of hepatocellular carcinoma (HCC), and recurrence frequency recently have drawn researchers' attention to alternative approaches. The concept of differentiation therapies (DT) relies on inducing differentiation in HCC cells in order to inhibit recurrence and metastasis. Hepatocyte nuclear factor 4 alpha (HNF4α) is the key hepatogenesis transcription factor and its upregulation may decrease the invasiveness of cancerous cells by suppressing epithelial-mesenchymal transition (EMT). This study aimed to evaluate the effect of conjugated linoleic acid (CLA) treatment, natural ligand of HNF4α, on the proliferation, migration, and invasion capacities of HCC cells in vitro. Materials and Method. Sk-Hep-1 and Hep-3B cells were treated with different doses of CLA or BIM5078 [1-(2'-chloro-5'-nitrobenzenesulfonyl)-2-methylbenzimidazole], an HNF4α antagonist. The expression levels of HNF4a and EMT related genes were evaluated and associated to hepatocytic functionalities, migration, and colony formation capacities, as well as to viability and proliferation rate of HCC cells. Results: In both HCC lines, CLA treatment induced HNF4α expression in parallel to significantly decreased EMT marker levels, migration, colony formation capacity, and proliferation rate, whereas BIM5078 treatment resulted in the opposite effects. Moreover, CLA supplementation also upregulated ALB, ZO1, and HNF4α proteins as well as glycogen storage capacity in the treated HCC cells. Conclusion: CLA treatment can induce a remarkable hepatocytic differentiation in HCC cells and attenuates cancerous features. This could be as a result of HNF4a induction and EMT inhibition.

4.
Int J Cancer ; 151(12): 2068-2081, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35730647

RESUMO

Colorectal cancer (CRC) is the second leading cause of cancer death worldwide that is attributed to gradual long-term accumulation of both genetic and epigenetic changes. To reduce the mortality rate of CRC and to improve treatment efficacy, it will be important to develop accurate noninvasive diagnostic tests for screening, acute and personalized diagnosis. Epigenetic changes such as DNA methylation play an important role in the development and progression of CRC. Over the last decade, a panel of DNA methylation markers has been reported showing a high accuracy and reproducibility in various semi-invasive or noninvasive biosamples. Research to obtain comprehensive panels of markers allowing a highly sensitive and differentiating diagnosis of CRC is ongoing. Moreover, the epigenetic alterations for cancer therapy, as a precision medicine strategy will increase their therapeutic potential over time. Here, we discuss the current state of DNA methylation-based biomarkers and their impact on CRC diagnosis. We emphasize the need to further identify and stratify methylation-biomarkers and to develop robust and effective detection methods that are applicable for a routine clinical setting of CRC diagnostics particularly at the early stage of the disease.


Assuntos
Neoplasias Colorretais , Metilação de DNA , Humanos , Medicina de Precisão , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/tratamento farmacológico , Reprodutibilidade dos Testes , Biomarcadores Tumorais/genética , Epigênese Genética
5.
Cancers (Basel) ; 13(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34680267

RESUMO

The aim of this study was to assess the effects of pirfenidone (PFD) on promoting epithelial-mesenchymal-transition (EMT) and stemness features in breast carcinoma cells through targeting cancer-associated-fibroblasts (CAFs). Using The Cancer Genome Atlas (TCGA) database, we analyzed the association between stromal index, EMT, and stemness-related genes across 1084 breast cancer patients, identifying positive correlation between YAP1, EMT, and stemness genes in samples with a high-stromal index. We monitored carcinoma cell invasion and spheroid formation co-cultured with CAFs in a 3D microfluidic device, followed by exposing carcinoma cells, spheroids, and CAFs with PFD. We depicted a positive association between the high-stromal index and the expression of EMT and stemness genes. High YAP1 expression in samples correlated with more advanced EMT status and stromal index. Additionally, we found that CAFs promoted spheroid formation and induced the expression of YAP1, VIM, and CD44 in spheroids. Treatment with PFD reduced carcinoma cell migration and decreased the expression of these genes at the protein level. The cytokine profiling showed significant depletion of various EMT- and stemness-regulated cytokines, particularly IL8, CCL17, and TNF-beta. These data highlight the potential application of PFD on inhibiting EMT and stemness in carcinoma cells through the targeting of critical cytokines.

6.
Sci Rep ; 11(1): 15112, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34302033

RESUMO

Carcinoma of Unknown Primary (CUP) is a heterogeneous and metastatic disease where the primary site of origin is undetectable. Currently, chemotherapy is the only state-of-art treatment option for CUP patients. The molecular profiling of the tumour, particularly mutation detection, offers a new treatment approach for CUP in a personalized fashion using targeted agents. We analyzed the mutation and copy number alterations profile of 1709 CUP samples deposited in the AACR Project Genomics Evidence Neoplasia Information Exchange (GENIE) cohort and explored potentially druggable mutations. We identified 52 significant mutated genes (SMGs) among CUP samples, in which 13 (25%) of SMGs were potentially targetable with either drugs are approved for the know primary tumour or undergoing clinical trials. The most variants detected were TP53 (43%), KRAS (19.90%), KMT2D (12.60%), and CDKN2A (10.30%). Additionally, using pan-cancer analysis, we found similar variants of TERT promoter in CUP and NSCLC samples, suggesting that these mutations may serve as a diagnostic marker for identifying the primary tumour in CUP. Taken together, the mutation profiling analysis of the CUP tumours may open a new way of identifying druggable targets and consequently administrating appropriate treatment in a personalized manner.


Assuntos
Carcinoma/genética , Mutação/genética , Neoplasias Primárias Desconhecidas/genética , Variações do Número de Cópias de DNA/genética , Análise Mutacional de DNA/métodos , Feminino , Genômica/métodos , Humanos , Masculino , Regiões Promotoras Genéticas/genética
7.
PLoS Comput Biol ; 17(7): e1009193, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34297718

RESUMO

Epithelial-mesenchymal transition (EMT) and its reverse process, mesenchymal-epithelial transition (MET), are believed to play key roles in facilitating the metastatic cascade. Metastatic lesions often exhibit a similar epithelial-like state to that of the primary tumour, in particular, by forming carcinoma cell clusters via E-cadherin-mediated junctional complexes. However, the factors enabling mesenchymal-like micrometastatic cells to resume growth and reacquire an epithelial phenotype in the target organ microenvironment remain elusive. In this study, we developed a workflow using image-based cell profiling and machine learning to examine morphological, contextual and molecular states of individual breast carcinoma cells (MDA-MB-231). MDA-MB-231 heterogeneous response to the host organ microenvironment was modelled by substrates with controllable stiffness varying from 0.2kPa (soft tissues) to 64kPa (bone tissues). We identified 3 distinct morphological cell types (morphs) varying from compact round-shaped to flattened irregular-shaped cells with lamellipodia, predominantly populating 2-kPa and >16kPa substrates, respectively. These observations were accompanied by significant changes in E-cadherin and vimentin expression. Furthermore, we demonstrate that the bone-mimicking substrate (64kPa) induced multicellular cluster formation accompanied by E-cadherin cell surface localisation. MDA-MB-231 cells responded to different substrate stiffness by morphological adaptation, changes in proliferation rate and cytoskeleton markers, and cluster formation on bone-mimicking substrate. Our results suggest that the stiffest microenvironment can induce MET.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Aprendizado de Máquina , Modelos Biológicos , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/fisiopatologia , Adaptação Fisiológica , Antígenos CD/metabolismo , Biomarcadores Tumorais/metabolismo , Fenômenos Biofísicos , Caderinas/metabolismo , Adesão Celular/fisiologia , Contagem de Células , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Forma Celular/fisiologia , Biologia Computacional , Matriz Extracelular/patologia , Matriz Extracelular/fisiologia , Feminino , Humanos , Metástase Neoplásica/patologia , Metástase Neoplásica/fisiopatologia , Microambiente Tumoral/fisiologia , Vimentina/metabolismo
8.
Pharmacol Ther ; 220: 107714, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33172596

RESUMO

Gastric adenocarcinoma (GAC) is the third leading cause of cancer-related death worldwide. A high mortality rate and resistance to treatment protocols due to a heterogeneous molecular pathogenesis has made discovering the key etiologic molecular alterations of the utmost importance. The remarkable role played by epigenetic modifications in repressing or activating many cancer-related genes and forming new epigenetic signatures can affect cancer initiation and progression. Hence, targeting the key epigenetic drivers could potentially attenuate cancer progression. MLLs, ARID1A and EZH2 are among the major epigenetic players that are frequently mutated in GACs. In this paper, we have proposed the existence of a network between these proteins that, together with PCAF and KDM6A, control the 3D chromatin structure and regulate the expression of tumor suppressor genes (TSGs) and oncogenes in GAC. Therefore, we suggest that manipulating the expression of EZH2, PCAF, and KDM6A or their downstream targets may reduce the cancerous phenotype in GAC.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Epigênese Genética , Histona Desmetilases , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética
9.
Pharmacol Res ; 160: 105070, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32659429

RESUMO

Targeted radionuclide therapy, known as molecular radiotherapy is a novel therapeutic module in cancer medicine. ß-radiating radionuclides have definite impact on target cells via interference in cell cycle and particular signalings that can lead to tumor regression with minimal off-target effects on the surrounding tissues. Radionuclides play a remarkable role not only in apoptosis induction and cell cycle arrest, but also in the amelioration of other characteristics of cancer cells. Recently, application of novel ß-radiating radionuclides in cancer therapy has been emerged as a promising therapeutic modality. Several investigations are ongoing to understand the underlying molecular mechanisms of ß-radiating elements in cancer medicine. Based on the radiation dose, exposure time and type of the ß-radiating element, different results could be achieved in cancer cells. It has been shown that ß-radiating radioisotopes block cancer cell proliferation by inducing apoptosis and cell cycle arrest. However, physical characteristics of the ß-radiating element (half-life, tissue penetration range, and maximum energy) and treatment protocol determine whether tumor cells undergo cell cycle arrest, apoptosis or both and to which extent. In this review, we highlighted novel therapeutic effects of ß-radiating radionuclides on cancer cells, particularly apoptosis induction and cell cycle arrest.


Assuntos
Partículas beta/uso terapêutico , Neoplasias/radioterapia , Radioisótopos/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Humanos
10.
J Cell Mol Med ; 22(3): 1464-1474, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28994199

RESUMO

The MEK/ERK pathway is found to be important in regulating different biological processes such as proliferation, differentiation and survival in a wide variety of cells. However, its role in self-renewal of haematopoietic stem cells is controversial and remains to be clarified. The aim of this study was to understand the role of MEK/ERK pathway in ex vivo expansion of mononuclear cells (MNCs) and purified CD34+ cells, both derived from human umbilical cord blood (hUCB). Based on our results, culturing the cells in the presence of an inhibitor of MEK/ERK pathway-PD0325901 (PD)-significantly reduces the expansion of CD34+ and CD34+  CD38- cells, while there is no change in the expression of stemness-related genes (HOXB4, BMI1). Moreover, in vivo analysis demonstrates that PD reduces engraftment capacity of ex vivo expanded CD34+ cells. Notably, when ERK pathway is blocked in UCB-MNCs, spontaneous erythroid differentiation is promoted, found in concomitant with increasing number of burst-forming unit-erythroid colony (BFU-E) as well as enhancement of erythroid glycophorin-A marker. These results are in total conformity with up-regulation of some erythroid enhancer genes (TAL1, GATA2, LMO2) and down-regulation of some erythroid repressor genes (JUN, PU1) as well. Taken together, our results support the idea that MEK/ERK pathway has a critical role in achieving the correct balance between self-renewal and differentiation of UCB cells. Also, we suggest that inhibition of ERK signalling could likely be a new key for erythroid induction of UCB-haematopoietic progenitor cells.


Assuntos
Benzamidas/farmacologia , Difenilamina/análogos & derivados , Células Eritroides/efeitos dos fármacos , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Animais Recém-Nascidos , Antígenos CD/genética , Antígenos CD/imunologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Difenilamina/farmacologia , Células Eritroides/citologia , Células Eritroides/imunologia , Feminino , Sangue Fetal/citologia , Sangue Fetal/imunologia , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/imunologia , Regulação da Expressão Gênica , Glicoforinas/genética , Glicoforinas/imunologia , Sobrevivência de Enxerto , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Humanos , Imunofenotipagem , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/imunologia , Camundongos , Gravidez , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/imunologia , Proteína 1 de Leucemia Linfocítica Aguda de Células T/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T/imunologia , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA