Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38739268

RESUMO

Wheat bran is one of the most abundant by-products from grain milling, which can be used as substrate for solid-state fermentation (SSF) to obtain enzymes able to convert this agro-industrial waste into glucose syrup, which in turn can be applied for the production of different food products. The present study aimed to determine centesimal composition of wheat bran, obtain enzymatic extract that converts wheat bran into wheat glucose syrup (WGS), produce rice flakes cereal bars (RFCB), and evaluate their nutritional composition and the presence of functional compounds, as well as their antioxidant potential. Determination of centesimal composition of wheat bran demonstrated its nutritional potential. Enzymatic extract was obtained and it converted wheat bran into WGS, which were applied to rice flakes producing RFCB. These cereal bars proved to be a source of dietary fiber (1.8 g) and soluble protein (7.2 g) while RCFB produced with corn glucose syrup did not present these nutritional components. In addition, RFCB produced with WGS showed polyphenolic compounds, among them flavonoids, which exhibited antioxidant activity by DPPH and ABTS radical scavenging (47.46% and 711.89 µM Trolox Equivalent/g, respectively), and iron ion reduction (71.70 µM Trolox equivalent/g). Final product showed a decrease in caloric value and sodium content. Therefore, the present study showed that the bioprocess of SSF yields a nutritional, ecological, and functional food product, which might be of great interest for food industry, adding nutritional and functional value to a well-stablished product.

2.
Int J Chron Obstruct Pulmon Dis ; 16: 3561-3574, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35002228

RESUMO

BACKGROUND AND OBJECTIVES: Chronic obstructive pulmonary disease (COPD) is characterized by the destruction of alveolar walls, chronic inflammation and persistent respiratory symptoms. There is no curative clinical treatment for COPD. In this context, cell-based therapy is a promising therapeutic alternative for COPD. Thus, in this open, controlled and randomized Phase I Clinical Trial, we aimed to assess the safety of the infusion of autologous bone marrow mononuclear cells (BMMC), adipose-derived mesenchymal stromal cells (ADSC) and, especially, the safety of concomitant infusion (co-infusion) of BMMC and ADSC as a new therapeutic alternative for COPD. The rationale for co-infusion of BMMC and ADSC is based on the hypothesis of an additive or synergistic therapeutic effect resulting from this association. METHODS: To achieve the proposed objectives, twenty patients with moderate-to-severe COPD were randomly divided into four groups: control group - patients receiving conventional treatment; BMMC group - patients receiving only BMMC; ADSC group - patients receiving only ADSC, and co-infusion group - patients receiving the concomitant infusion of BMMC and ADSC. Patients were assessed for pulmonary function, biochemical profile, and quality of life over a 12 months follow-up. RESULTS: No adverse events were detected immediately after the infusion of BMMC, ADSC or co-infusion. In the 12-month follow-up, no causal relationship was established between adverse events and cell therapy procedures. Regarding the efficacy, the BMMC group showed an increase in forced expiratory volume (FEV1) and diffusing capacity for carbon monoxide (DLCO). Co-infusion group showed a DLCO, and gas exchange improvement and a better quality of life. CONCLUSION: The results obtained allow us to conclude that cell-based therapy with co-infusion of BMMC and ADSC is a safe procedure and a promising therapeutic for COPD. However, additional studies with a greater number of patients are needed before randomized and controlled Phase III clinical trials can be implemented.


Assuntos
Células-Tronco Mesenquimais , Doença Pulmonar Obstrutiva Crônica , Medula Óssea , Volume Expiratório Forçado , Humanos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/terapia , Qualidade de Vida
3.
BMC Chem ; 14(1): 34, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32355912

RESUMO

Eugenia punicifolia (Kunth) D. C. (Myrtaceae) has been showing interesting biological activities in the literature which was correlated to its phenolic compounds. In the sense of a better recovering of phenolics with the best antioxidant and antiproliferative activities, an extraction, based on multivariate analytical approach, was developed from E. punicifolia leaves. The different extractor solvents (ethanol, methanol and water) and their binary and ternary combinations were evaluated using a simplex-centroid mixture design and surface response methodology. The optimized crude extracts were investigated for phenol and flavonoid content and compared to their antioxidant (EC50) and antiproliferative properties against HEp-2 (cell line derived from the oropharyngeal carcinoma) and mononuclear viability cells. Ethanolic extracts showed the best phenolic content with the highest antioxidant activity and moderated activity antiproliferative to HEp-2. ESI-QTOF-MS revealed the presence of quercetin and myricetin derivatives, which was correlated to activities tested. Then, simplex-centroid design allowed us to correlate the Eugenia punicifolia biological activities with the extracts obtained from solvent different polarity mixtures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA