Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Atherosclerosis ; 392: 117502, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513437

RESUMO

BACKGROUND AND AIMS: Premature atherosclerotic cardiovascular disease (CVD) is a clinic characteristic of familial hypercholesterolemia (FH). Coronary calcium score (CCS) is a highly used imaging modality to evidence atherosclerotic plaque burden. microRNAs (miRNAs) are non-coding RNAs that epigenetically regulate gene expression. Here, we investigated whether CCS associates with a specific miRNA-signature in FH-patients. METHODS: Patients with genetic diagnosis of FH (N = 86) from the nationwide SAFEHEART-cohort were investigated by computed tomography angiography imaging and classified depending on the presence of coronary calcification in FH-CCS (+) and FH-CCS (-) groups by the Agatston score. Differential miRNA profiling was performed in two stages: first by Affymetrix microarray technology (high-throughput differential profiling-studies) and second by RT-PCR using TaqMan-technology (analytical RT-qPCR study) in plasma of the two patient groups. RESULTS: miR-193a-5p, miR-30e-5p and miR-6821-5p levels were significantly higher in FH-CCS (+) compared to FH-CCS (-). miR-6821-5p was the best miRNA to discriminate FH-patients CCS(+), according to receiver operating characteristic (ROC) analysis (AUC: 0.70 ± 0.06, p = 0.006). High miR-6821-5p levels were associated with older age (p = 0.03) and high LDL-burden (p = 0.014) using a ROC-derived cut-off value. However, miR-6821-5p did not correlate with age in either the CCS- or CCS + group. Genes involved in calcification processes were identified by in silico analysis. The relation of cell-calcification and expression levels of miR-6821-5p, BMP2 and SPP1 was validated experimentally in human vascular smooth muscle cell cultures. CONCLUSIONS: Up-regulated levels of miR-6821-5p are found in the plasma of asymptomatic FH-patients with coronary calcified atherosclerotic plaques, as well as in isolated human vascular smooth muscle cells expressing the pro-calcification genes BMP2 and SPP1. These findings highlight the impact of epigenetic regulation on the development of subclinical atherosclerosis.


Assuntos
Doença da Artéria Coronariana , Hiperlipoproteinemia Tipo II , MicroRNAs , Calcificação Vascular , Humanos , Hiperlipoproteinemia Tipo II/sangue , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/complicações , Masculino , Feminino , Pessoa de Meia-Idade , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/diagnóstico por imagem , Calcificação Vascular/sangue , Calcificação Vascular/genética , Calcificação Vascular/diagnóstico por imagem , MicroRNAs/sangue , MicroRNAs/genética , Adulto , Doenças Assintomáticas , Angiografia por Tomografia Computadorizada , MicroRNA Circulante/sangue , MicroRNA Circulante/genética , Angiografia Coronária , Células Cultivadas , Placa Aterosclerótica/sangue , Biomarcadores/sangue , Perfilação da Expressão Gênica , Idoso , Miócitos de Músculo Liso/metabolismo , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/patologia , Curva ROC
2.
Int J Mol Sci ; 22(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066088

RESUMO

Familial hypercholesterolemia (FH) is increasingly associated with inflammation, a phenotype that persists despite treatment with lipid lowering therapies. The alternative C3 complement system (C3), as a key inflammatory mediator, seems to be involved in the atherosclerotic process; however, the relationship between C3 and lipids during plaque progression remains unknown. The aim of the study was to investigate by a systems biology approach the role of C3 in relation to lipoprotein levels during atherosclerosis (AT) progression and to gain a better understanding on the effects of C3 products on the phenotype and function of human lipid-loaded vascular smooth muscle cells (VSMCs). By mass spectrometry and differential proteomics, we found the extracellular matrix (ECM) of human aortas to be enriched in active components of the C3 complement system, with a significantly different proteomic signature in AT segments. Thus, C3 products were more abundant in AT-ECM than in macroscopically normal segments. Furthermore, circulating C3 levels were significantly elevated in FH patients with subclinical coronary AT, evidenced by computed tomographic angiography. However, no correlation was identified between circulating C3 levels and the increase in plaque burden, indicating a local regulation of the C3 in AT arteries. In cell culture studies of human VSMCs, we evidenced the expression of C3, C3aR (anaphylatoxin receptor) and the integrin αMß2 receptor for C3b/iC3b (RT-PCR and Western blot). C3mRNA was up-regulated in lipid-loaded human VSMCs, and C3 protein significantly increased in cell culture supernatants, indicating that the C3 products in the AT-ECM have a local vessel-wall niche. Interestingly, C3a and iC3b (C3 active fragments) have functional effects on VSMCs, significantly reversing the inhibition of VSMC migration induced by aggregated LDL and stimulating cell spreading, organization of F-actin stress fibers and attachment during the adhesion of lipid-loaded human VSMCs. This study, by using a systems biology approach, identified molecular processes involving the C3 complement system in vascular remodeling and in the progression of advanced human atherosclerotic lesions.


Assuntos
Aterosclerose/patologia , Complemento C3/metabolismo , Hiperlipoproteinemia Tipo II/patologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Proteoma/metabolismo , Adulto , Aterosclerose/imunologia , Aterosclerose/metabolismo , Estudos de Casos e Controles , Adesão Celular , Células Cultivadas , Feminino , Humanos , Hiperlipoproteinemia Tipo II/imunologia , Hiperlipoproteinemia Tipo II/metabolismo , Masculino , Pessoa de Meia-Idade , Músculo Liso Vascular/imunologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/imunologia , Miócitos de Músculo Liso/metabolismo , Proteoma/análise , Remodelação Vascular , Cicatrização , Adulto Jovem
3.
Cardiovasc Res ; 117(1): 109-122, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32061123

RESUMO

AIMS: Presentation of acute events in patients with atherosclerosis remains unpredictable even after controlling for classical risk factors. MicroRNAs (miRNAs) measured in liquid biopsies could be good candidate biomarkers to improve risk prediction. Here, we hypothesized that miRNAs could predict atherosclerotic plaque progression and clinical event presentation in familial hypercholesterolaemia (FH) patients. METHODS AND RESULTS: Circulating miRNAs (plasma, exosomes, and microvesicles) were investigated by TaqMan Array and RT-qPCR assays. Patients with genetic diagnosis of FH and healthy relatives from the SAFEHEART cohort were included. A differential signature of 10 miRNA was obtained by comparing two extreme phenotypes consisting of FH patients suffering a cardiovascular event (CVE) within a 8-year follow-up period (FH-CVE, N = 42) and non-FH hypercholesterolaemic relatives from the same cohort, matched for age and treatment, without CVE during the same period (nFH-nCVE, N = 30). The validation studies included two independent groups of patients with FH background (discovery group, N = 89, validation group N = 196), developing a future CVE (FH-CVE) or not (FH-nCVE) within the same time period of follow-up. Of the 10 miRNAs initially selected, miR-133a was significantly higher in FH-CVE than in FH-nCVE patients. Receiver operating characteristic analysis confirmed miR-133a as the best microRNA for predicting CVE in FH patients (0.76 ± 0.054; P < 0.001). Furthermore, Kaplan-Meier and COX analysis showed that high plasma miR-133a levels associated to the higher risk of presenting a CVE within the next 8 years (hazard ratio 3.89, 95% confidence interval 1.88-8.07; P < 0.001). In silico analysis of curate biological interactions related miR-133a with target genes involved in regulation of the cell-membrane lipid-receptor LRP6 and inflammatory cytokines (CXCL8, IL6, and TNF). These predictions were experimentally proven in human macrophages and endothelial cells transfected with agomiR-133a. CONCLUSION: Elevated levels of miR-133a in the circulation anticipate those FH patients that are going to present a clinical CVE within the next 2 years (average). Mechanistically, miR-133a is directly related with lipid- and inflammatory signalling in key cells for atherosclerosis progression.


Assuntos
Doenças Cardiovasculares/etiologia , MicroRNA Circulante/sangue , Hiperlipoproteinemia Tipo II/sangue , MicroRNAs/sangue , Idoso , Aterosclerose/sangue , Aterosclerose/etiologia , Biomarcadores/sangue , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/diagnóstico , Estudos de Casos e Controles , Linhagem Celular , MicroRNA Circulante/genética , Citocinas/genética , Citocinas/metabolismo , Células Endoteliais/metabolismo , Feminino , Perfilação da Expressão Gênica , Fatores de Risco de Doenças Cardíacas , Humanos , Hiperlipoproteinemia Tipo II/complicações , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/genética , Mediadores da Inflamação/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Macrófagos/metabolismo , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Placa Aterosclerótica , Valor Preditivo dos Testes , Prognóstico , Estudo de Prova de Conceito , Estudos Prospectivos , Medição de Risco , Espanha , Transcriptoma , Regulação para Cima
4.
Antioxid Redox Signal ; 33(9): 645-662, 2020 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31696726

RESUMO

Significance: Circulating microvesicles (cMV) are small (0.1-1 µm) phospholipid-rich blebs released by almost all cell types, and their release increases with cell activation and injury, thus reflecting the state of the cell from which they are originated. Microvesicles (MV) are found in the bloodstream, and they affect the phenotype of recipient cells, after local or systemic circulation, by intercellular transfer of their molecular content. Recent Advances: Several studies suggest the use of cell-specific MV subpopulations as predictive biomarkers for cardiovascular diseases (CVDs) at different stages and degrees of severity. In this review, we describe the state of the art of cMV as noninvasive surrogate biomarkers of vascular injury and dysfunction correlated with poor clinical outcomes in CVD. Critical Issues: Despite the growing body of evidence supporting the importance of cMV as hallmarks of CVD and their utility as biomarkers of CVD, the specific roles of each phenotype of cMV in CVD burden and prognosis still remain to be elucidated and validated in large cohorts. In addition, the development of standardized and reproducible techniques is required to be used as biomarkers for disease progression in the clinical setting. Future Directions: A multipanel approach with specific cMV phenotypes, added to current biomarkers and scores, will undoubtedly provide unique prognostic information to stratify patients for appropriate therapy on the basis of their risk of atherothrombotic disease and will open a new research area as therapeutic targets for CVD. MV will add to the implementation of precision medicine by helping the cellular and molecular characterization of CVD patients.


Assuntos
Biomarcadores , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/metabolismo , Micropartículas Derivadas de Células/metabolismo , Biópsia Líquida , Animais , Doenças Cardiovasculares/sangue , Tomada de Decisão Clínica , Gerenciamento Clínico , Suscetibilidade a Doenças , Humanos , Biópsia Líquida/métodos , Técnicas de Diagnóstico Molecular
5.
FASEB J ; 32(2): 601-612, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29457550

RESUMO

Familial hypercholesterolemia (FH) conveys a high risk of premature atherosclerosis as a result of lifelong exposure to high LDL cholesterol levels that are not fully reduced by standard-of-care lipid-lowering treatment. Inflammatory mediators have played a role in the progression of atherosclerotic lesions. Here, we investigated whether innate immunity cells in patients with FH have a specific proinflammatory phenotype that is distinct from that of cells in normal participants. To this end, miR-505-3p-a microRNA related to chronic inflammation-and its target genes were investigated in monocyte-derived macrophages (MACs) of patients with FH (FH-MACs) and non-FH controls (co-MACs). On the basis of the profiler PCR array analysis of agomiR-505-3p-transfected MACs, we identified the chemokine receptors, CCR3, CCR4, and CXCR1, as genes that are regulated by miR-505-3p via the transcription factor, RUNX1. miR-505-3p was significantly down-regulated, whereas CCR3, CCR4, CXCR, and RUNX1 were increased in FH-MAC compared with co-MAC, with the increase being more evident in the proinflammatory M1-like FH-MAC. Chemokine receptor levels were unrelated to LDL plasma levels at entry, but correlated with age in patients with FH, not in controls. In summary, we demonstrate for first time to our knowledge that MACs from FH-MACs have an inflammatory phenotype that is characterized by the up-regulation of CCR3, CCR4, and CXCR1 under the control of miR-505-3p. These results suggest a chronic inflammatory condition in FH innate immunity cells that is not reverted by standard lipid-lowering treatment.-Escate, R., Mata, P., Cepeda, J. M., Padró, T., Badimon, L. miR-505-3p controls chemokine receptor up-regulation in macrophages: role in familial hypercholesterolemia.


Assuntos
Ácidos Cólicos/sangue , Macrófagos/metabolismo , MicroRNAs/metabolismo , Receptores de Quimiocinas/biossíntese , Erros Inatos do Metabolismo de Esteroides/metabolismo , Regulação para Cima , Ácidos Cólicos/imunologia , Ácidos Cólicos/metabolismo , Feminino , Humanos , Macrófagos/imunologia , Macrófagos/patologia , Masculino , MicroRNAs/imunologia , Receptores de Quimiocinas/imunologia , Erros Inatos do Metabolismo de Esteroides/imunologia , Erros Inatos do Metabolismo de Esteroides/patologia , Erros Inatos do Metabolismo de Esteroides/terapia
6.
J Cell Mol Med ; 21(3): 487-499, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27680891

RESUMO

Familial hypercholesterolaemia (FH) is a major risk for premature coronary heart disease due to severe long-life exposure to high LDL levels. Accumulation of LDL in the vascular wall triggers atherosclerosis with activation of the innate immunity system. Here, we have investigated (i) gene expression of LDLR and LRPs in peripheral blood cells (PBLs) and in differentiated macrophages of young FH-patients; and (ii) whether macrophage from FH patients have a differential response when exposed to high levels of atherogenic LDL. PBLs in young heterozygous genetically characterized FH patients have higher expression of LRP5 and LRP6 than age-matched healthy controls or patients with secondary hypercholesterolaemia. LRP1 levels were similar among groups. In monocyte-derived macrophages (MACs), LRP5 and LRP1 transcript levels did not differ between FHs and controls in resting conditions, but when exposed to agLDL, FH-MAC showed a highly significant up-regulation of LRP5, while LRP1 was unaffected. PBL and MAC cells from FH patients had significantly lower LDLR expression than control cells, independently of the lipid-lowering therapy. Furthermore, exposure of FH-MAC to agLDL resulted in a reduced expression of CD163, scavenger receptor with anti-inflammatory and atheroprotective properties. In summary, our results show for first time that LRPs, active lipid-internalizing receptors, are up-regulated in innate immunity cells of young FH patients that have functional LDLR mutations. Additionally, their reduced CD163 expression indicates less atheroprotection. Both mechanisms may play a synergic effect on the onset of premature atherosclerosis in FH patients.


Assuntos
Hiperlipoproteinemia Tipo II/genética , Proteínas Relacionadas a Receptor de LDL/genética , Macrófagos/metabolismo , Regulação para Cima/genética , Adulto , Animais , Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/genética , Aterosclerose/genética , LDL-Colesterol/genética , Feminino , Heterozigoto , Humanos , Hiperlipoproteinemia Tipo II/metabolismo , Imunidade Inata/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mutação/genética , Receptores de Superfície Celular/genética , Receptores de LDL/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA