Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Stem Cell Reports ; 19(8): 1053-1060, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39059379

RESUMO

Transplantation of pluripotent stem cell-derived cardiomyocytes is a novel promising cell-based therapeutic approach for patients with heart failure. However, engraftment arrhythmias are a predictable life-threatening complication and represent a major hurdle for clinical translation. Thus, we wanted to experimentally study whether impulse generation by transplanted cardiomyocytes can propagate to the host myocardium and overdrive the recipient rhythm. We transplanted human induced pluripotent stem cell-derived cardiomyocytes expressing the optogenetic actuator Bidirectional Pair of Opsins for Light-induced Excitation and Silencing (BiPOLES) in a guinea pig injury model. Eight weeks after transplantation ex vivo, Langendorff perfusion was used to assess electrical coupling. Pulsed photostimulation was applied to specifically activate the engrafted cardiomyocytes. Photostimulation resulted in ectopic pacemaking that propagated to the host myocardium, caused non-sustained arrhythmia, and stimulated the recipient heart with higher pacing frequency (4/9 hearts). Our study demonstrates that transplanted cardiomyocytes can (1) electrically couple to the host myocardium and (2) stimulate the recipient heart. Thus, our results provide experimental evidence for an important aspect of engraftment-induced arrhythmia induction and thereby support the current hypothesis that cardiomyocyte automaticity can serve as a trigger for ventricular arrhythmias.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Animais , Cobaias , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Humanos , Arritmias Cardíacas/terapia , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/metabolismo , Optogenética/métodos , Coração/fisiologia , Diferenciação Celular , Miocárdio/metabolismo , Miocárdio/citologia , Transplante de Células-Tronco/métodos
2.
Pflugers Arch ; 475(12): 1463-1477, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37863976

RESUMO

Optogenetic actuators are rapidly advancing tools used to control physiology in excitable cells, such as neurons and cardiomyocytes. In neuroscience, these tools have been used to either excite or inhibit neuronal activity. Cell type-targeted actuators have allowed to study the function of distinct cell populations. Whereas the first described cation channelrhodopsins allowed to excite specific neuronal cell populations, anion channelrhodopsins were used to inhibit neuronal activity. To allow for simultaneous excitation and inhibition, opsin combinations with low spectral overlap were introduced. BiPOLES (Bidirectional Pair of Opsins for Light-induced Excitation and Silencing) is a bidirectional optogenetic tool consisting of the anion channel Guillardia theta anion-conducting channelrhodopsin 2 (GtACR2 with a blue excitation spectrum and the red-shifted cation channel Chrimson. Here, we studied the effects of BiPOLES activation in cardiomyocytes. For this, we knocked in BiPOLES into the adeno-associated virus integration site 1 (AAVS1) locus of human-induced pluripotent stem cells (hiPSC), subjected these to cardiac differentiation, and generated BiPOLES expressing engineered heart tissue (EHT) for physiological characterization. Continuous light application activating either GtACR2 or Chrimson resulted in cardiomyocyte depolarization and thus stopped EHT contractility. In contrast, short light pulses, with red as well as with blue light, triggered action potentials (AP) up to a rate of 240 bpm. In summary, we demonstrate that cation, as well as anion channelrhodopsins, can be used to activate stem cell-derived cardiomyocytes with pulsed photostimulation but also to silence cardiac contractility with prolonged photostimulation.


Assuntos
Miócitos Cardíacos , Optogenética , Humanos , Optogenética/métodos , Channelrhodopsins/genética , Miócitos Cardíacos/metabolismo , Ânions/metabolismo , Cátions
3.
J Clin Med ; 12(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37109251

RESUMO

Objective: At the tissue level, disruption of the extracellular matrix network leads to irreversible cardiac fibrosis, which contributes to myocardial dysfunction. At the myocyte level, downregulation of beta-adrenoceptors (beta-AR) reduces adaptation to increased workload. The aim of our study was to analyse the correlation between myocardial fibrosis and beta-AR sensitivity in patients with aortic valve (AV) disease. Methods: A total of 92 consecutive patients who underwent elective AV surgery between 2017-2019 were included in our study (51 with aortic regurgitation (AR-group); 41 with aortic stenosis (AS-group) and left ventricular (LV) biopsies were obtained intraoperatively. In vitro force contractility testing was performed by measuring beta-AR sensitivity (-log EC50[ISO]). In parallel, a quantitative analysis of myocardial fibrosis burden was performed. Results: Mean age at the time of AV surgery was not statistically different in both groups (AR: 53.3 ± 15.3 years vs. AS: 58.7 ± 17.0 years; p = 0.116). The LV end-diastolic diameter was significantly enlarged in the AR-group when compared to the AS-group (59.4 ± 15.6 vs. 39.7 ± 21.2; p < 0.001). Analysis of beta-AR sensitivity (AR: -6.769 vs. AS: -6.659; p = 0.316) and myocardial fibrosis (AR: 8.9% vs. AS: 11.3%; p = 0.284) showed no significant differences between patients with AS and AR. There was no correlation between myocardial fibrosis and beta-AR sensitivity in the whole study cohort (R = 0.1987; p = 0.100) or in the AS-subgroup (R = 0.009; p = 0.960). However, significant correlation of fibrosis and beta-AR sensitivity was seen in AR-patients (R = 0.363; p = 0.023). Conclusion: More severe myocardial fibrosis was associated with reduced beta-AR sensitivity in patients presenting with AR but not with AS. Therefore, our results suggest that in patients with AR, cellular myocardial dysfunction is present and correlates with the extent of myocardial fibrosis in the myocardium.

4.
Cells ; 12(6)2023 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-36980219

RESUMO

Left ventricular (LV) reverse remodeling after aortic valve (AV) surgery is less predictable in chronic aortic regurgitation (AR) than in aortic stenosis (AS). We aimed to disclose specific LV myocardial protein signatures possibly contributing to differential disease progression. Global protein profiling of LV myocardial samples excised from the subaortic interventricular septum in patients with isolated AR or AS undergoing AV surgery was performed using liquid chromatography-electrospray ionization-tandem mass spectrometry. Based on label-free quantitation protein intensities, a logistic regression model was calculated and adjusted for age, sex and protein concentration. Web-based functional enrichment analyses of phenotype-associated proteins were performed utilizing g:Profiler and STRING. Data are available via ProteomeXchange with identifier PXD039662. Lysates from 38 patients, including 25 AR and 13 AS samples, were analyzed. AR patients presented with significantly larger LV diameters and volumes (end-diastolic diameter: 61 (12) vs. 48 (13) mm, p < 0.001; end-diastolic volume: 180.0 (74.6) vs. 92.3 (78.4), p = 0.001). A total of 171 proteins were associated with patient phenotype: 117 were positively associated with AR and the enrichment of intracellular compartment proteins (i.e., assigned to carbohydrate and nucleotide metabolism, protein biosynthesis and the proteasome) was detected. Additionally, 54 were positively associated with AS and the enrichment of extracellular compartment proteins (i.e., assigned to the immune and hematopoietic system) was observed. In summary, functional enrichment analysis revealed specific AR- and AS-associated signatures of LV myocardial proteins.


Assuntos
Insuficiência da Valva Aórtica , Estenose da Valva Aórtica , Cardiomiopatias , Humanos , Insuficiência da Valva Aórtica/cirurgia , Insuficiência da Valva Aórtica/complicações , Proteômica , Cardiomiopatias/complicações , Progressão da Doença
5.
J Mol Cell Cardiol ; 176: 1-10, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36681268

RESUMO

AIMS: The incidence of atrial fibrillation (AF) increases with age. Women have a lower risk. Little is known on the impact of age, sex and clinical variables on action potentials (AP) recorded in right atrial tissue obtained during open heart surgery from patients in sinus rhythm (SR) and in longstanding AF. We here investigated whether age or sex have an impact on the shape of AP recorded in vitro from right atrial tissue. METHODS: We performed multivariable analysis of individual AP data from trabeculae obtained during heart surgery of patients in SR (n = 320) or in longstanding AF (n = 201). AP were recorded by sharp microelectrodes at 37 °C at 1 Hz. Impact of clinical variables were modeled using a multivariable mixed model regression. RESULTS: In SR, AP duration at 90% repolarization (APD90) increased with age. Lower ejection fraction and higher body mass index were associated with smaller action potential amplitude (APA) and maximum upstroke velocity (Vmax). The use of beta-blockers was associated with larger APD90. In tissues from women, resting membrane potential was less negative and APA as well as Vmax were smaller. Besides shorter APD20 in elderly patients, effects of age and sex on atrial AP were lost in AF. CONCLUSION: The higher probability to develop AF at advanced age cannot be explained by a shortening in APD90. Less negative RMP and lower upstroke velocity might contribute to lower incidence of AF in women, which may be of clinical relevance.


Assuntos
Apêndice Atrial , Fibrilação Atrial , Humanos , Feminino , Idoso , Potenciais de Ação , Potenciais da Membrana , Átrios do Coração
6.
Circulation ; 146(15): 1159-1169, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36073365

RESUMO

BACKGROUND: Transplantation of pluripotent stem cell-derived cardiomyocytes represents a promising therapeutic strategy for cardiac regeneration, and the first clinical studies in patients with heart failure have commenced. Yet, little is known about the mechanism of action underlying graft-induced benefits. Here, we explored whether transplanted cardiomyocytes actively contribute to heart function. METHODS: We injected cardiomyocytes with an optogenetic off-on switch in a guinea pig cardiac injury model. RESULTS: Light-induced inhibition of engrafted cardiomyocyte contractility resulted in a rapid decrease of left ventricular function in ≈50% (7/13) animals that was fully reversible with the offset of photostimulation. CONCLUSIONS: Our optogenetic approach demonstrates that transplanted cardiomyocytes can actively participate in heart function, supporting the hypothesis that the delivery of new force-generating myocardium can serve as a regenerative therapeutic strategy.


Assuntos
Miócitos Cardíacos , Células-Tronco Pluripotentes , Animais , Diferenciação Celular/fisiologia , Cobaias , Miocárdio , Miócitos Cardíacos/transplante , Células-Tronco Pluripotentes/fisiologia , Função Ventricular Esquerda
7.
Eur J Cardiothorac Surg ; 62(2)2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35218664

RESUMO

OBJECTIVES: Univentricular malformations are severe cardiac lesions with limited therapeutic options and a poor long-term outcome. The staged surgical palliation (Fontan principle) results in a circulation in which venous return is conducted to the pulmonary arteries via passive laminar flow. We aimed to generate a contractile subpulmonary neo-ventricle from engineered heart tissue (EHT) to drive pulmonary flow actively. METHODS: A three-dimensional tubular EHT (1.8-cm length, 6-mm inner diameter, ca. 1-mm wall thickness) was created by casting human-induced pluripotent stem cell-derived cardiomyocytes (0.9 ml, 18 mio/ml) embedded in a fibrin-based hydrogel around a silicone tube. EHTs were cultured under continuous, pulsatile flow through the silicone tube for 23 days. RESULTS: The constructs started to beat macroscopically at days 8-14 and remained stable in size and shape over the whole culture period. Tubular EHTs showed a coherent beating pattern after 23 days in culture, and isovolumetric pressure measurements demonstrated a coherent pulsatile wave formation with an average frequency of 77 ± 5 beats/min and an average pressure of 0.2 mmHg. Histological analysis revealed cardiomyocytes mainly localized along the inner and outer curvature of the tubular wall with mainly longitudinal alignment. Cell density in the center of the tubular wall was lower. CONCLUSIONS: A simple tube-shaped contractile EHT was generated from human-induced pluripotent stem cells and developed a synchronous beating pattern. Further steps need to focus on optimizing support materials, flow rates and geometry to obtain a construct that creates sufficient pressures to support a directed and pulsatile blood flow.


Assuntos
Miócitos Cardíacos , Engenharia Tecidual , Fibrina , Ventrículos do Coração , Humanos , Silicones , Engenharia Tecidual/métodos
8.
Am J Physiol Heart Circ Physiol ; 322(3): H373-H385, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35030072

RESUMO

Omecamtiv mecarbil (OM), a myosin activator, was reported to induce complex concentration- and species-dependent effects on contractile function, and clinical studies indicated a low therapeutic index with diastolic dysfunction at concentrations above 1 µM. To further characterize effects of OM in a human context and under different preload conditions, we constructed a setup that allows isometric contractility analysis of human induced pluripotent stem cell (hiPSC)-derived engineered heart tissues (EHTs). The results were compared with effects of OM on the very same EHTs measured under auxotonic conditions. OM induced a sustained, concentration-dependent increase in time to peak under all conditions (maximally two- to threefold). Peak force, in contrast, was increased by OM only in human, but not rat EHTs and only under isometric conditions, varied between hiPSC lines and showed a biphasic concentration dependency with maximal effects at 1 µM. Relaxation time tended to fall under auxotonic and strongly increased under isometric conditions, again with biphasic concentration dependency. Diastolic tension concentration dependently increased under all conditions. The latter was reduced by an inhibitor of the mitochondrial sodium calcium exchanger (CGP-37157). OM induced increases in mitochondrial oxidation in isolated cardiomyocytes, indicating that OM, an inotrope that does not increase intracellular and mitochondrial Ca2+, can induce mismatch between an increase in ATP and ROS production and unstimulated mitochondrial redox capacity. Taken together, we developed a novel setup well suitable for isometric measurements of EHTs. The effects of OM on contractility and diastolic tension are complex with concentration-, time-, species- and loading-dependent differences. Effects on mitochondrial function require further studies.NEW & NOTEWORTHY We developed a novel setup allowing precise control of preload of EHT and characterized effects of the myosin activator OM. OM not only exerted contraction-slowing and positive inotropic effects but also increased diastolic tension. Effect size and direction varied between species, auxotonic and isometric conditions, concentration, and time. We also observed OM-induced increase of mitochondrial ROS, which has not been observed before and may explain part of the effects on contractility.


Assuntos
Cardiotônicos/farmacologia , Técnicas de Reprogramação Celular/métodos , Contração Miocárdica , Miócitos Cardíacos/efeitos dos fármacos , Ureia/análogos & derivados , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Ureia/farmacologia
9.
J Mol Cell Cardiol ; 166: 1-10, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35081367

RESUMO

Myocardial injury leads to an irreversible loss of cardiomyocytes (CM). The implantation of human engineered heart tissue (EHT) has become a promising regenerative approach. Previous studies exhibited beneficial, dose-dependent effects of human induced pluripotent stem cell (hiPSC)-derived EHT patch transplantation in a guinea pig model in the subacute phase of myocardial injury. Yet, advanced heart failure often results from a chronic remodeling process. Therefore, from a clinical standpoint it is worthwhile to explore the ability to repair the chronically injured heart. In this study human EHT patches were generated from hiPSC-derived CMs (15 × 106 cells) and implanted epicardially four weeks after injury in a guinea pig cryo-injury model. Cardiac function was evaluated by echocardiography after a follow-up period of four weeks. Hearts revealed large transmural myocardial injuries amounting to 27% of the left ventricle. EHT recipient hearts demonstrated compact muscle islands of human origin in the scar region, as indicated by a positive staining for human Ku80 and dystrophin, remuscularizing 5% of the scar area. Echocardiographic analysis demonstrated no significant functional difference between animals that received EHT patches and animals in the cell-free control group (fractional area change 36% vs. 34%). Thus, EHT patches engrafted in the chronically injured heart but in contrast to the subacute model, grafts were smaller and EHT patch transplantation did not improve left ventricular function, highlighting the difficulties for a regenerative approach.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Cicatriz , Cobaias , Ventrículos do Coração , Humanos , Miócitos Cardíacos/transplante , Engenharia Tecidual/métodos
10.
EMBO Mol Med ; 13(6): e13074, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33998164

RESUMO

The phospholamban (PLN) p.Arg14del mutation causes dilated cardiomyopathy, with the molecular disease mechanisms incompletely understood. Patient dermal fibroblasts were reprogrammed to hiPSC, isogenic controls were established by CRISPR/Cas9, and cardiomyocytes were differentiated. Mutant cardiomyocytes revealed significantly prolonged Ca2+ transient decay time, Ca2+ -load dependent irregular beating pattern, and lower force. Proteomic analysis revealed less endoplasmic reticulum (ER) and ribosomal and mitochondrial proteins. Electron microscopy showed dilation of the ER and large lipid droplets in close association with mitochondria. Follow-up experiments confirmed impairment of the ER/mitochondria compartment. PLN p.Arg14del end-stage heart failure samples revealed perinuclear aggregates positive for ER marker proteins and oxidative stress in comparison with ischemic heart failure and non-failing donor heart samples. Transduction of PLN p.Arg14del EHTs with the Ca2+ -binding proteins GCaMP6f or parvalbumin improved the disease phenotype. This study identified impairment of the ER/mitochondria compartment without SR dysfunction as a novel disease mechanism underlying PLN p.Arg14del cardiomyopathy. The pathology was improved by Ca2+ -scavenging, suggesting impaired local Ca2+ cycling as an important disease culprit.


Assuntos
Transplante de Coração , Miócitos Cardíacos , Proteínas de Ligação ao Cálcio/metabolismo , Retículo Endoplasmático , Humanos , Mitocôndrias , Mutação , Miócitos Cardíacos/metabolismo , Proteômica , Doadores de Tecidos
11.
Redox Biol ; 41: 101951, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33831709

RESUMO

Sulforaphane (SFN) is a phytochemical compound extracted from cruciferous plants, like broccoli or cauliflower. Its isothiocyanate group renders SFN reactive, thus allowing post-translational modification of cellular proteins to regulate their function with the potential for biological and therapeutic actions. SFN and stabilized variants recently received regulatory approval for clinical studies in humans for the treatment of neurological disorders and cancer. Potential unwanted side effects of SFN on heart function have not been investigated yet. The present study characterizes the impact of SFN on cardiomyocyte contractile function in cardiac preparations from neonatal rat, adult mouse and human induced-pluripotent stem cell-derived cardiomyocytes. This revealed a SFN-mediated negative inotropic effect, when administered either acutely or chronically, with an impairment of the Frank-Starling response to stretch activation. A direct effect of SFN on myofilament function was excluded in chemically permeabilized mouse trabeculae. However, SFN pretreatment increased lactate formation and enhanced the mitochondrial production of reactive oxygen species accompanied by a significant reduction in the mitochondrial membrane potential. Transmission electron microscopy revealed disturbed sarcomeric organization and inflated mitochondria with whorled membrane shape in response to SFN exposure. Interestingly, administration of the alternative energy source l-glutamine to the medium that bypasses the uptake route of pyruvate into the mitochondrial tricarboxylic acid cycle improved force development in SFN-treated EHTs, suggesting indeed mitochondrial dysfunction as a contributor of SFN-mediated contractile dysfunction. Taken together, the data from the present study suggest that SFN might impact negatively on cardiac contractility in patients with cardiovascular co-morbidities undergoing SFN supplementation therapy. Therefore, cardiac function should be monitored regularly to avoid the onset of cardiotoxic side effects.


Assuntos
Apoptose , Isotiocianatos , Animais , Humanos , Camundongos , Mitocôndrias , Ratos , Espécies Reativas de Oxigênio , Sulfóxidos
12.
Circulation ; 143(20): 1991-2006, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33648345

RESUMO

BACKGROUND: Human engineered heart tissue (EHT) transplantation represents a potential regenerative strategy for patients with heart failure and has been successful in preclinical models. Clinical application requires upscaling, adaptation to good manufacturing practices, and determination of the effective dose. METHODS: Cardiomyocytes were differentiated from 3 different human induced pluripotent stem cell lines including one reprogrammed under good manufacturing practice conditions. Protocols for human induced pluripotent stem cell expansion, cardiomyocyte differentiation, and EHT generation were adapted to substances available in good manufacturing practice quality. EHT geometry was modified to generate patches suitable for transplantation in a small-animal model and perspectively humans. Repair efficacy was evaluated at 3 doses in a cryo-injury guinea pig model. Human-scale patches were epicardially transplanted onto healthy hearts in pigs to assess technical feasibility. RESULTS: We created mesh-structured tissue patches for transplantation in guinea pigs (1.5×2.5 cm, 9-15×106 cardiomyocytes) and pigs (5×7 cm, 450×106 cardiomyocytes). EHT patches coherently beat in culture and developed high force (mean 4.6 mN). Cardiomyocytes matured, aligned along the force lines, and demonstrated advanced sarcomeric structure and action potential characteristics closely resembling human ventricular tissue. EHT patches containing ≈4.5, 8.5, 12×106, or no cells were transplanted 7 days after cryo-injury (n=18-19 per group). EHT transplantation resulted in a dose-dependent remuscularization (graft size: 0%-12% of the scar). Only high-dose patches improved left ventricular function (+8% absolute, +24% relative increase). The grafts showed time-dependent cardiomyocyte proliferation. Although standard EHT patches did not withstand transplantation in pigs, the human-scale patch enabled successful patch transplantation. CONCLUSIONS: EHT patch transplantation resulted in a partial remuscularization of the injured heart and improved left ventricular function in a dose-dependent manner in a guinea pig injury model. Human-scale patches were successfully transplanted in pigs in a proof-of-principle study.


Assuntos
Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Engenharia Tecidual/métodos , Animais , Modelos Animais de Doenças , Cobaias , Humanos
13.
Cell Signal ; 82: 109970, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33677066

RESUMO

BACKGROUND: There is ongoing interest in generating cardiomyocytes derived from human induced pluripotent stem cells (hiPSC) to study human cardiac physiology and pathophysiology. Recently we found that norepinephrine-stimulated calcium currents (ICa) in hiPSC-cardiomyocytes were smaller in conventional monolayers (ML) than in engineered heart tissue (EHT). In order to elucidate culture specific regulation of ß1-adrenoceptor (ß1-AR) responses we investigated whether action of phosphodiesterases (PDEs) may limit norepinephrine effects on ICa and on cytosolic cAMP in hiPSC-cardiomyocytes. Results were compared to adult human atrial cardiomyocytes. METHODS: Adult human atrial cardiomyocytes were isolated from tissue samples obtained during open heart surgery. All patients were in sinus rhythm. HiPSC-cardiomyocytes were dissociated from ML and EHT. Förster-resonance energy transfer (FRET) was used to monitor cytosolic cAMP (Epac1-camps sensor, transfected by adenovirus). ICa was recorded by whole-cell patch clamp technique. Cilostamide (300 nM) and rolipram (10 µM) were used to inhibit PDE3 and PDE4, respectively. ß1-AR were stimulated with the physiological agonist norepinephrine (100 µM). RESULTS: In adult human atrial cardiomyocytes, norepinephrine increased cytosolic cAMP FRET ratio by +13.7 ± 1.5% (n = 10/9, mean ± SEM, number of cells/number patients) and ICa by +10.4 ± 1.5 pA/pF (n = 15/10). This effect was not further increased in the concomitant presence of rolipram, cilostamide and norepinephrine, indicating saturation by norepinephrine alone. In ML hiPSC-cardiomyocytes, norepinephrine exerted smaller increases in cytosolic cAMP and ICa (FRET +9.6 ± 0.5% n = 52/21, number of cells/number of ML or EHT, and ICa + 1.4 ± 0.2 pA/pF n = 34/7, p < 0.05 each) and both were augmented in the presence of the PDE4 inhibitor rolipram (FRET +16.7 ± 0.8% n = 94/26 and ICa + 5.6 ± 1.4 pA/pF n = 11/5, p < 0.05 each). Cilostamide increased the response to norepinephrine on FRET (+12.7 ± 0.5% n = 91/19, p < 0.05), but not on ICa. In EHT hiPSC-cardiomyocytes, norepinephrine responses on both, FRET and ICa, were larger than in ML (FRET +12.1 ± 0.3% n = 87/32 and ICa + 3.3 ± 0.2 pA/pF n = 13/5, p < 0.05 each). Rolipram augmented the norepinephrine effect on ICa (+6.2 ± 1.6 pA/pF; p < 0.05 vs. norepinephrine alone, n = 10/4), but not on FRET. CONCLUSION: Our results show culture-dependent differences in hiPSC-cardiomyocytes. In conventional ML but not in EHT, maximum norepinephrine effects on cytosolic cAMP depend on PDE3 and PDE4, suggesting immaturity when compared to the situation in adult human atrial cardiomyocytes. The smaller ICa responses to norepinephrine in ML and EHT vs. adult human atrial cardiomyocytes depend at least partially on a non-physiological large impact of PDE4 in hiPSC-cardiomyocytes.


Assuntos
AMP Cíclico/metabolismo , Átrios do Coração , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Adulto , Células Cultivadas , Meios de Cultura , Átrios do Coração/citologia , Átrios do Coração/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Cultura Primária de Células
14.
Eur J Cardiothorac Surg ; 60(1): 56-63, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-33619556

RESUMO

OBJECTIVES: Heart failure induced by valvular cardiomyopathy occurs in a substantial proportion of patients undergoing heart valve surgery. We aimed (i) to quantify beta-adrenoceptor (beta-AR) function by measuring the inotropic effect of isoprenaline in left ventricular (LV) tissue and (ii) to correlate beta-AR-mediated inotropy with clinical markers of heart failure. METHODS: A total of 179 LV myocardial samples were obtained from 104 consecutive patients who underwent aortic valve (AV) surgery between 2017 and 2019. Beta-ARs were stimulated by increasing the concentrations of isoprenaline, followed by a single high concentration of forskolin and calcium. Beta-AR sensitivity was estimated as the concentration to achieve half maximum effects (EC50). Maximum effect size was calculated as the relative beta-AR-mediated inotropic response compared to the force in the presence of high calcium [FISO/Ca (%)]. In vitro data were correlated with the clinical indicators of LV disease. RESULTS: FISO/Ca was independent of age and sex and amounted to 79.6 ± 20.5%. In a multivariate regression model, we found a significant inverse association between FISO/Ca and preoperative left ventricular end-diastolic diameter increase per 10 mm (OR -9.24, 95% CI -16.66 to -1.82; P = 0.015). Furthermore, patients with end-stage heart failure showed a strong tendency towards more severe reduction of max beta-AR response, as indicated by reduced FISO/Ca in a multivariate model (OR -29.60, 95% CI -61.92 to 2.72; P = 0.055). CONCLUSIONS: Our study indicates that in vitro myocardial contractility testing can quantify beta-AR dysfunction in patients with AV disease. We found a significant association between reduced beta-AR sensitivity and increased LV diameter, which may indicate a role of beta-AR dysfunction in the development of heart failure in patients with AV disease.


Assuntos
Valvopatia Aórtica , Insuficiência da Valva Aórtica , Cardiomiopatias , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/cirurgia , Humanos , Isoproterenol/farmacologia , Receptores Adrenérgicos
15.
Naunyn Schmiedebergs Arch Pharmacol ; 394(2): 291-298, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32949251

RESUMO

Atrial fibrillation (AF)-associated remodeling includes contractile dysfunction whose reasons are only partially resolved. Serotonin (5-HT) increases contractile force and causes arrhythmias in atrial trabeculae from patients in sinus rhythm (SR). In persistent atrial fibrillation (peAF), the force responses to 5-HT are blunted and arrhythmic effects are abolished. Since force but not arrhythmic responses to 5-HT in peAF could be restored by PDE3 + PDE4 inhibition, we sought to perform real-time measurements of cAMP to understand whether peAF alters PDE3 + PDE4-mediated compartmentation of 5-HT4 receptor-cAMP responses. Isolated human atrial myocytes from patients in SR, with paroxysmal AF (paAF) or peAF, were adenovirally transduced to express the FRET-based cAMP sensor Epac1-camps. Forty-eight hours later, cAMP responses to 5-HT (100 µM) were measured in the absence or concomitant presence of the PDE3 inhibitor cilostamide (0.3 µM) and the PDE4 inhibitor rolipram (1 µM). We successfully established real-time cAMP imaging in AF myocytes. 5-HT increased cAMP in SR, paAF, and peAF, but in line with previous findings on contractility, this increase was considerably smaller in peAF than in SR or paAF. The maximal cAMP response to forskolin (10 µM) was preserved in all groups. The diminished cAMP response to 5-HT in peAF was recovered by preincubation with cilostamide + rolipram. We uncovered a significantly diminished cAMP response to 5-HT4 receptor stimulation which may explain the blunted 5-HT inotropic responses observed in peAF. Since both cAMP and force responses but not arrhythmic responses were recovered after concomitant inhibition of PDE3 + PDE4, they might be regulated in different subcellular microdomains.


Assuntos
Fibrilação Atrial/metabolismo , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Miócitos Cardíacos/metabolismo , Receptores 5-HT4 de Serotonina/metabolismo , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
16.
Acta Physiol (Oxf) ; 231(3): e13564, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33002334

RESUMO

AIM: There is an increasing awareness of the impact of age and sex on cardiovascular diseases (CVDs). Differences in physiology are suspected. Beta-adrenoceptors (beta-ARs) are an important drug target in CVD and potential differences might have significant impact on the treatment of many patients. To investigate whether age and sex affects beta-AR function, we analysed a large data set on beta-AR-induced inotropy in human atrial trabeculae. METHODS: We performed multivariable analysis of individual atrial contractility data from trabeculae obtained during heart surgery of patients in sinus rhythm (535 trabeculae from 165 patients). Noradrenaline or adrenaline were used in the presence of the beta2 -selective antagonist (ICI 118 551, 50 nmol/L) or the beta1 -selective antagonist (CGP 20712A, 300 nmol/L) to stimulate beta1 -AR or beta2 -AR respectively. Agonist concentration required to achieve half-maximum inotropic effects (EC50 ) was taken as a measure of beta-AR sensitivity. RESULTS: Impact of clinical variables was modelled using multivariable mixed model regression. As previously reported, chronic treatment with beta-blockers sensitized beta-AR. However, there was no significant interaction between basal force, maximum force and beta-AR sensitivity when age and sex were modelled continuously. In addition, there was no statistically significant effect of body mass index or diabetes on atrial contractility. CONCLUSION: Our large, multivariable analysis shows that neither age nor sex affects beta-AR-mediated inotropy or catecholamine sensitivity in human atrial trabeculae. These findings may have important clinical implications because beta-ARs, as a common drug target in CVD and heart failure, do not behave differently in women and men across age decades.


Assuntos
Contração Miocárdica , Receptores Adrenérgicos beta 2 , Antagonistas Adrenérgicos beta/farmacologia , Feminino , Átrios do Coração , Direitos Humanos , Humanos , Masculino , Norepinefrina
17.
Eur J Heart Fail ; 22(12): 2272-2289, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33094495

RESUMO

The co-occurrence of cancer and heart failure (HF) represents a significant clinical drawback as each disease interferes with the treatment of the other. In addition to shared risk factors, a growing body of experimental and clinical evidence reveals numerous commonalities in the biology underlying both pathologies. Inflammation emerges as a common hallmark for both diseases as it contributes to the initiation and progression of both HF and cancer. Under stress, malignant and cardiac cells change their metabolic preferences to survive, which makes these metabolic derangements a great basis to develop intersection strategies and therapies to combat both diseases. Furthermore, genetic predisposition and clonal haematopoiesis are common drivers for both conditions and they hold great clinical relevance in the context of personalized medicine. Additionally, altered angiogenesis is a common hallmark for failing hearts and tumours and represents a promising substrate to target in both diseases. Cardiac cells and malignant cells interact with their surrounding environment called stroma. This interaction mediates the progression of the two pathologies and understanding the structure and function of each stromal component may pave the way for innovative therapeutic strategies and improved outcomes in patients. The interdisciplinary collaboration between cardiologists and oncologists is essential to establish unified guidelines. To this aim, pre-clinical models that mimic the human situation, where both pathologies coexist, are needed to understand all the aspects of the bidirectional relationship between cancer and HF. Finally, adequately powered clinical studies, including patients from all ages, and men and women, with proper adjudication of both cancer and cardiovascular endpoints, are essential to accurately study these two pathologies at the same time.


Assuntos
Insuficiência Cardíaca , Inflamação/fisiopatologia , Neoplasias , Comorbidade , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/terapia , Humanos , Neoplasias/diagnóstico , Neoplasias/epidemiologia , Neoplasias/fisiopatologia , Neoplasias/terapia , Fatores de Risco
18.
Cardiovasc Res ; 116(14): 2207-2215, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32966582

RESUMO

AIMS: Coronavirus disease 2019 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has emerged as a global pandemic. SARS-CoV-2 infection can lead to elevated markers of cardiac injury associated with higher risk of mortality. It is unclear whether cardiac injury is caused by direct infection of cardiomyocytes or is mainly secondary to lung injury and inflammation. Here, we investigate whether cardiomyocytes are permissive for SARS-CoV-2 infection. METHODS AND RESULTS: Two strains of SARS-CoV-2 infected human induced pluripotent stem cell-derived cardiomyocytes as demonstrated by detection of intracellular double-stranded viral RNA and viral spike glycoprotein expression. Increasing concentrations of viral RNA are detected in supernatants of infected cardiomyocytes, which induced infections in Caco-2 cell lines, documenting productive infections. SARS-CoV-2 infection and induced cytotoxic and proapoptotic effects associated with it abolished cardiomyocyte beating. RNA sequencing confirmed a transcriptional response to viral infection as demonstrated by the up-regulation of genes associated with pathways related to viral response and interferon signalling, apoptosis, and reactive oxygen stress. SARS-CoV-2 infection and cardiotoxicity was confirmed in a 3D cardiosphere tissue model. Importantly, viral spike protein and viral particles were detected in living human heart slices after infection with SARS-CoV-2. Coronavirus particles were further observed in cardiomyocytes of a patient with coronavirus disease 2019. Infection of induced pluripotent stem cell-derived cardiomyocytes was dependent on cathepsins and angiotensin-converting enzyme 2, and was blocked by remdesivir. CONCLUSION: This study demonstrates that SARS-CoV-2 infects cardiomyocytes in vitro in an angiotensin-converting enzyme 2- and cathepsin-dependent manner. SARS-CoV-2 infection of cardiomyocytes is inhibited by the antiviral drug remdesivir.


Assuntos
Apoptose , COVID-19/virologia , Cardiopatias/virologia , Miócitos Cardíacos/virologia , SARS-CoV-2/patogenicidade , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/farmacologia , Apoptose/efeitos dos fármacos , COVID-19/metabolismo , COVID-19/patologia , Células CACO-2 , Catepsinas/metabolismo , Cardiopatias/tratamento farmacológico , Cardiopatias/metabolismo , Cardiopatias/patologia , Interações Hospedeiro-Patógeno , Humanos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Espécies Reativas de Oxigênio/metabolismo , SARS-CoV-2/efeitos dos fármacos , Transdução de Sinais , Tratamento Farmacológico da COVID-19
20.
Cells ; 9(1)2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31968557

RESUMO

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) represent an unlimited source of human CMs that could be a standard tool in drug research. However, there is concern whether hiPSC-CMs express all cardiac ion channels at physiological level and whether they might express non-cardiac ion channels. In a control hiPSC line, we found large, "noisy" outward K+ currents, when we measured outward potassium currents in isolated hiPSC-CMs. Currents were sensitive to iberiotoxin, the selective blocker of big conductance Ca2+-activated K+ current (IBK,Ca). Seven of 16 individual differentiation batches showed a strong initial repolarization in the action potentials (AP) recorded from engineered heart tissue (EHT) followed by very early afterdepolarizations, sometimes even with consecutive oscillations. Iberiotoxin stopped oscillations and normalized AP shape, but had no effect in other EHTs without oscillations or in human left ventricular tissue (LV). Expression levels of the alpha-subunit (KCa1.1) of the BKCa correlated with the presence of oscillations in hiPSC-CMs and was not detectable in LV. Taken together, individual batches of hiPSC-CMs can express sarcolemmal ion channels that are otherwise not found in the human heart, resulting in oscillating afterdepolarizations in the AP. HiPSC-CMs should be screened for expression of non-cardiac ion channels before being applied to drug research.


Assuntos
Potenciais de Ação , Artefatos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , Potenciais de Ação/fisiologia , Adulto , Linhagem Celular , Simulação por Computador , Humanos , Peptídeos/toxicidade , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA